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The running time of nested parallel programs on shared memory machines depends in significant part on
how well the scheduler mapping the program to the machine is optimized for the organization of caches
and processor cores on the machine. Recent work proposed “space-bounded schedulers” for scheduling such
programs on the multi-level cache hierarchies of current machines. The main benefit of this class of sched-
ulers is that they provably preserve locality of the program at every level in the hierarchy, which can result
in fewer cache misses and better use of bandwidth than the popular work-stealing scheduler. On the other
hand, compared to work-stealing, space-bounded schedulers are inferior at load balancing and may have
greater scheduling overheads, raising the question as to the relative effectiveness of the two schedulers in
practice.

In this paper, we provide the first experimental study aimed at addressing this question. To facilitate this
study, we built a flexible experimental framework with separate interfaces for programs and schedulers.
This enables a head-to-head comparison of the relative strengths of schedulers in terms of running times
and cache miss counts across a range of benchmarks. (The framework is validated by comparisons with the
Intel R© CilkTM Plus work-stealing scheduler.) We present experimental results on a 32-core Xeon R© 7560
comparing work-stealing, hierarchy-minded work-stealing, and two variants of space-bounded schedulers
on both divide-and-conquer micro-benchmarks and some popular algorithmic kernels. Our results indicate
that space-bounded schedulers reduce the number of L3 cache misses compared to work-stealing sched-
ulers by 25–65% for most of the benchmarks, but incur up to 27% additional scheduler and load-imbalance
overhead. Only for memory-intensive benchmarks can the reduction in cache misses overcome the added
overhead, resulting in up to a 25% improvement in running time for synthetic benchmarks and about 20%
improvement for algorithmic kernels. We also quantify runtime improvements varying the available band-
width per core (the “bandwidth gap”), and show up to 50% improvements in the running times of kernels as
this gap increases 4-fold. As part of our study, we generalize prior definitions of space-bounded schedulers
to allow for more practical variants (while still preserving their guarantees), and explore implementation
tradeoffs.
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1. INTRODUCTION
Writing nested parallel programs using fork-join primitives on top of a unified mem-
ory space is an elegant and productive way to program parallel machines. Nested
parallel programs are portable, sufficiently expressive for many algorithmic prob-
lems [Shun et al. 2012; Blelloch et al. 2012], relatively easy to analyze [Blumofe and
Leiserson 1999; Blelloch et al. 2010; Blelloch et al. 2011], and supported by many pro-
gramming languages including OpenMP [OpenMP Architecture Review Board 2008],
Cilk++ [Leiserson 2010], Intel R© TBB [Intel 2013a], Java Fork-Join [Lea 2000], and
Microsoft TPL [Microsoft 2013]. The unified memory address space hides from pro-
grammers the complexity of managing a diverse set of physical memory components
like RAM and caches. Processor cores can access memory locations without explicitly
specifying their physical location. Beneath this interface, however, the real cost of ac-
cessing a memory address from a core can vary widely, depending on where in the
machine’s cache/memory hierarchy the data resides at time of access. Runtime thread
schedulers can play a large role in determining this cost, by optimizing the timing and
placement of program tasks for effective use of the machine’s caches.

Machine Models and Schedulers. Robust schedulers for mapping nested parallel pro-
grams to machines with certain kinds of simple cache organizations such as single-
level shared and private caches have been proposed. They work well both in the-
ory [Blumofe et al. 1996; Blumofe and Leiserson 1999; Blelloch et al. 1999] and in
practice [Frigo et al. 1998; Narlikar 2002]. Among these, the work-stealing scheduler
is particularly appealing for private caches because of its simplicity and low overheads,
and is widely deployed in various run-time systems such as Cilk++. The PDF sched-
uler [Blelloch et al. 1999] is suited for shared caches and practical versions of this
scheduler have been studied [Narlikar 2002]. The cost of these schedulers in terms of
cache misses or running times can be bounded by the locality cost of the programs as
measured in certain abstract program-centric cost models [Blumofe et al. 1996; Acar
et al. 2002; Blelloch et al. 2011; 2013; Simhadri 2013].

However, modern parallel machines have multiple levels of cache, with each cache
shared amongst a subset of cores (e.g., see Fig. 1(a)). A parallel memory hierarchy
(PMH) as represented by a tree of caches [Alpern et al. 1993] (Fig. 1(b)) is a reasonably
accurate and tractable model for such machines [Fatahalian et al. 2006; Chowdhury
et al. 2010; Chowdhury et al. 2013; Blelloch et al. 2011]. Because previously studied
schedulers for simple machine models may not be optimal for these complex machines,
recent work has proposed a variety of hierarchy-aware schedulers [Fatahalian et al.
2006; Chowdhury et al. 2010; Chowdhury et al. 2013; Quintin and Wagner 2010; Blel-
loch et al. 2011] for use on such machines. For example, hierarchy-aware work-stealing
schedulers such as the priority work-stealing (PWS) and hierarchial work-stealing
(HWS) schedulers [Quintin and Wagner 2010] have been proposed, but no theoreti-
cal bounds are known.

To address this gap, space-bounded schedulers [Chowdhury et al. 2010; Chowdhury
et al. 2013] have been proposed and analyzed. In a space-bounded scheduler it is as-
sumed that the computation has a nested (hierarchical) structure. The goal of a space-
bounded scheduler is to match the space taken by a subcomputation to the space avail-
able on some level of the machine hierarchy. For example if a machine has some num-
ber of shared caches each with m-bytes of memory and k cores, then once a subcom-
putation fits within m bytes, the scheduler can assign it to one of these caches. The
subcomputation is then said to be pinned to that shared cache and all of its subcom-
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putations must run on the k cores belonging to it. This ensures that all data is shared
within the cache. For this to work the scheduler must know (a good upper bound on)
a subcomputation’s space requirement when it starts. In this paper we assume each
function in a computation is annotated with the size of its memory footprint, which is
passed to the scheduler (see Appendix A for an illustration). This size is typically com-
puted during execution from function arguments such as the number of elements in a
subarray. Note that these space annotations are program-centric, i.e., a property of a
computation not a machine—the computation can be oblivious to the size of the caches
and hence is portable across machines. Therefore, the space requirement of each sub-
computation can be estimated by hand calculation for most algorithmic computations.
A program profiler could also be used to estimate space.

Under certain conditions such space-bounded schedulers can guarantee good bounds
on cache misses at every level of the hierarchy and running time in terms of some
intuitive program-centric metrics. Chowdhury et al. [Chowdhury et al. 2010] (updated
as a journal article in [Chowdhury et al. 2013]) presented such schedulers with strong
asymptotic bounds on cache misses and runtime for highly balanced computations.
Our follow-on work [Blelloch et al. 2011] presented slightly generalized schedulers
that obtain similarly strong bounds for unbalanced computations.

Our Results: The First Experimental Study of Space-Bounded Schedulers. While
space-bounded schedulers have good theoretical guarantees on the PMH model, there
has been no experimental study to suggest that these (asymptotic) guarantees trans-
late into good performance on real machines with multi-level caches. Existing analyses
of these schedulers ignore the overhead costs of the scheduler itself and account only
for the program run time. Intuitively, given the low overheads and highly-adaptive
load balancing of work-stealing in practice, space-bounded schedulers would seem to
be inferior on both accounts, but superior in terms of cache misses. This raises the
question as to the relative effectiveness of the two types of schedulers in practice.

This paper presents the first experimental study aimed at addressing this question
through a head-to-head comparison of work-stealing and space-bounded schedulers. To
facilitate a fair comparison of the schedulers on various benchmarks, it is necessary
to have a framework that provides separate modular interfaces for writing portable
nested parallel programs and specifying schedulers. The framework should be light-
weight, flexible, provide fine-grained timers, and enable access to various hardware
counters for cache misses, clock cycles, etc. Prior scheduler frameworks, such as the
Sequoia framework [Fatahalian et al. 2006] which implements a scheduler that closely
resembles a space-bounded scheduler, fall short of these goals by (i) forcing a program
to specify the specific sizes of the levels of the hierarchy it is intended for, making
it non-portable, and (ii) lacking the flexibility to readily support work-stealing or its
variants.

This paper describes a scheduler framework that we designed and implemented,
which achieves these goals. To specify a (nested-parallel) program in the framework,
the programmer uses a Fork-Join primitive (and a Parallel-For built on top of Fork-
Join). To specify the scheduler, one needs to implement just three primitives describing
the management of tasks at Fork and Join points: add, get, and done (semantics in
Section 3). Any scheduler can be described in this framework as long as the schedule
does not require the preemption of sequential segments of the program. A simple work-
stealing scheduler, for example, can be described with only 10s of lines of code in this
framework. Furthermore, in this framework, program tasks are completely managed
by the schedulers, allowing them full control of the execution.

The framework enables a head-to-head comparison of the relative strengths of sched-
ulers in terms of running times and cache miss counts across a range of benchmarks.
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(a) 32-core Xeon R© 7560 (b) PMH model of [Alpern et al. 1993]

Fig. 1. Memory hierarchy of a current generation architecture from Intel R©, plus an example abstract par-
allel hierarchy model. Each cache (rectangle) is shared by all cores (circles) in its subtree. The parameters
of the PMH model are explained in Section 2.

(The framework is validated by comparisons with the commercial CilkTM Plus work-
stealing scheduler.) We present experimental results on a 32-core Intel R© Nehalem
series Xeon R© 7560 multicore with 3 levels of cache. As depicted in Fig. 1(a), each L3
cache is shared (among the 8 cores on a socket) while the L1 and L2 caches are ex-
clusive to cores. We compare four schedulers—work-stealing, priority work-stealing
(PWS) [Quintin and Wagner 2010], and two variants of space-bounded schedulers—on
both divide-and-conquer micro-benchmarks (scan-based and gather-based) and popu-
lar algorithmic kernels such as quicksort, sample sort, quad trees, quickhull, matrix
multiplication, triangular solver and Cholesky factorization.

Our results indicate that space-bounded schedulers reduce the number of L3 cache
misses compared to work-stealing schedulers by 25–65% for most of the benchmarks,
while incurring up to 27% additional overhead. For memory-intensive benchmarks,
the reduction in cache misses overcomes the added overhead, resulting in up to a 25%
improvement in running time for synthetic benchmarks and about 20% improvement
for algorithmic kernels. To better understand how the widening gap between process-
ing power (cores) and memory bandwidth impacts scheduler performance, we quantify
runtime improvements over a 4-fold range in the available bandwidth per core and
show further improvements in the running times of kernels (up to 50%) as the band-
width gap increases.

Contributions. The contributions of this paper are:

— A modular framework for describing schedulers, machines as tree of caches, and
nested parallel programs (Section 3). The framework is equipped with timers and
counters. Schedulers that are expected to work well on tree of cache models such as
space-bounded schedulers and certain work-stealing schedulers are implemented.

— The first experimental study of space-bounded schedulers, and the first head-to-head
comparison with work-stealing schedulers (Section 5). On a common multicore ma-
chine configuration (4 sockets, 32 cores, 3 levels of caches), we quantify the reduc-
tion in L3 cache misses incurred by space-bounded schedulers relative to both work-
stealing variants on synthetic and non-synthetic benchmarks. On bandwidth-bound
benchmarks, an improvement in cache misses translates to improvement in run-
ning times, although some of the improvement is eroded by the greater overhead
of the space-bounded scheduler. We also explore implementation tradeoffs in space-
bounded schedulers.

Note that in order to produce efficient implementations, we provide a slightly broader
definition (Section 4) of space-bounded schedulers than in previous work [Chowdhury
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Fig. 2. (left) Decomposing the computation: tasks, strands and parallel blocks. F and J are corresponding
fork and join points. (right) Timeline of a task and its first strand, showing the difference between being live
and execution.

et al. 2010; Chowdhury et al. 2013; Blelloch et al. 2011]. The key difference is in the
scheduling of sequential subcomputations, called strands. Specifically, we introduce a
new parameter (constant µ) that limits the maximum space footprint of a sequential
strand, thereby allowing multiple “large” strands to be scheduled simultaneously on a
cache. Without this optimization, we found that space-bounded schedulers do not ex-
pose enough parallelism to effectively load-balance the computation. We also general-
ize the space annotations themselves, allowing strands to be annotated directly rather
than inheriting their space from a parent task. This latter change has minor impact on
the definition of space-bounded schedulers, but it may yield better programmability.
We describe two variants of space-bounded schedulers, highlighting the engineering
details that allow for low overhead.

2. DEFINITIONS
We start with a recursive definition of nested parallel computations, and use it to de-
fine what constitutes a schedule. We will then define the parallel memory hierarchy
(PMH) model—a machine model that reasonably accurately represents shared mem-
ory parallel machines with deep memory hierarchies. This terminology will be used
later to define schedulers for the PMH model.

Computation Model, Tasks and Strands. We consider computations with nested par-
allelism, allowing arbitrary dynamic nesting of fork-join constructs including parallel
loops, but no other synchronizations. This corresponds to the class of algorithms with
series-parallel dependence graphs (see Fig. 2(left)).

Nested parallel computations can be decomposed into “tasks”, “parallel blocks” and
“strands” recursively as follows. As a base case, a strand is a serial sequence of in-
structions not containing any parallel constructs or subtasks. A task is formed by
serially composing k ≥ 1 strands interleaved with (k − 1) “parallel blocks”, denoted by
t = `1; b1; . . . ; `k. A parallel block is formed by composing in parallel one or more tasks
with a fork point before all of them and a join point after (denoted by b = t1‖t2‖ . . . ‖tk).
A parallel block can be, for example, a parallel loop or some constant number of recur-
sive calls. The top-level computation is a task.

A strand always ends in a fork or a join. The strand that immediately follows a
parallel block with fork F and join J is referred to as the continuation of F or J .
If a strand ` ends in a fork F , ` immediately precedes the first strand in the tasks
that constitute the parallel block forked by F . If ` ends in a join J , it immediately
precedes the continuation of J . We define the logical precedence relation between
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strands in a task as the transitive closure of the immediate precedence relation defined
above. They induce a partial ordering on the strands in the top level task. The first
strand in any task logically precedes every other strand in it; the last strand in a
task is logically preceded by every strand in it. Further, the logical precedence relation
induces a directed series-parallel graph on the strands of a task with the first and the
last strands as the source and the sink terminals. We refer to this as the dependence
graph or the DAG of a task.

We use the notation L(t) to indicate all strands that are recursively included in a
task. For every strand `, there exists a task t(`) such that ` is nested immediately
inside t(`). We call this the task of strand `.

Our computation model assumes all strands share a single memory address space.
We say two strands are logically parallel if they are not ordered in the dependence
graph. Logically parallel reads (i.e., logically parallel strands reading the same mem-
ory location) are permitted, but not determinacy races (i.e., logically parallel strands
that read or write the same location with at least one write).

Schedule. A schedule for a task is a “valid” mapping of its strands to processor cores
across time. A scheduler is a tool that creates a valid schedule for a task (or a computa-
tion) on a machine, reacting to the behavior (execution time, etc.) of the strands on the
machine. In this section, we define what constitutes a valid schedule for a nested par-
allel computation on a machine. We restrict ourselves to non-preemptive schedulers—
schedulers that cannot migrate strands across cores once they begin executing. Both
work-stealing and space-bounded schedulers are non-premptive.

A non-preemptive schedule for a task t defines for each strand in ` ∈ L(t),

— start time: the time the first instruction of ` begins executing;
— end time: the (post-facto) time the last instruction of ` finishes; and
— location: the core on which the strand ` is executed, denoted core(`),

We say that a strand ` is live between its start and end time. Note that this duration
is a function of both the strand and the machine.

A non-preemptive schedule must also obey the following constraints:

— (ordering): Any strand `1 ordered before `2 in the dependence graph must end before
`2 starts.

— (non-preemptive execution): No two strands may be live on the same core at the same
time.

We extend some of this notation and terminology to tasks. The start time of a task t
is the start time of the first strand in t. Similarly, the end time of a task is the end time
of the last strand in t. A task may be live on multiple cores at the same time.

When discussing specific schedulers, it is convenient to consider the time a task or
strand first becomes available to execute. We use the term spawn time to refer to this
time, which is the instant at which the preceding fork or join finishes. Naturally, the
spawn time is no later than the start time, but a schedule may choose not to execute
the task or strand immediately. We say that the task or strand is queued during the
time between its spawn time and start time as it is most often put on hold in some
queue, awaiting exection, by a scheduler. When a scheduler is able to reserve sufficient
processing and memory resources for a task or a strand, it pulls it out of the queue
and starts execution at which point it becomes live. Fig. 2(right) illustrates the spawn,
start and end times of a task and its initial strand. The task and initial strand are
spawned and start at the same time by definition. The strand is continuously executed
until it ends, while a task goes through several phases of execution and idling before
it ends.
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Machine Model: Parallel Memory Hierarchy (PMH). Following prior work addressing
multi-level parallel hierarchies [Alpern et al. 1993; Chowdhury and Ramachandran
2007; Blelloch et al. 2008; Chowdhury and Ramachandran 2008; Valiant 2011; Blelloch
et al. 2010; Chowdhury et al. 2010; Chowdhury et al. 2013; Blelloch et al. 2011], we
model parallel machines using a tree-of-caches abstraction. For concreteness, we use
a symmetric variant of the parallel memory hierarchy (PMH) model [Alpern et al.
1993] (see Fig. 1(b)), which is consistent with many other models [Blelloch et al. 2008;
Blelloch et al. 2010; Chowdhury and Ramachandran 2007; 2008; Chowdhury et al.
2010; Chowdhury et al. 2013]. A PMH consists of a height-h tree of memory units,
called caches. The leaves of the tree are at level-0 and any internal node has level
one greater than its children. The leaves (level-0 nodes) are cores, and the level-h root
corresponds to an infinitely large main memory. As described in [Blelloch et al. 2011]
each level in the tree is parameterized by four parameters: the size of the cache M i at
level i, the block size Bi used to transfer to the next higher level, the cost of a cache
miss Ci which represents the combined costs of latency and bandwidth, and the fanout
fi (number of level i− 1 caches below it).

3. EXPERIMENTAL FRAMEWORK
We implemented a C++ based framework in which nested parallel programs and
schedulers can be built for shared memory multicore machines. The implementa-
tion, along with a few schedulers and algorithms, is available on the web page
http://www.cs.cmu.edu/∼hsimhadr/sched-exp. Some of the code for the threadpool mod-
ule has been adapted from an earlier implementation of threadpool [Kriemann 2004].
Our framework was designed with the following objectives in mind.
Modularity: The framework separates the specification of three components—
programs, schedulers, and description of machine parameters—for portability and fair-
ness as depicted in Fig. 3. The user can choose any of the candidates from these three
categories. Note, however, some schedulers may not be able to execute programs with-
out scheduler-specific hints (such as space annotations).
Composable Interface: The interface for specifying the components should be com-
posable, and the specification built on the interface should be easy to reason about.
Hint Passing: While it is important to separate program and schedulers, it is useful
to allow the program to pass hints (extra annotations on tasks) to the scheduler to
guide its decisions.
Minimal Overhead: The framework itself should be light-weight with minimal sys-
tem calls, locking and code complexity. The control flow should pass between the func-
tional modules (program, scheduler) with negligible time spent outside. The frame-
work should avoid generating background memory traffic and interrupts.
Timing and Measurement: It should enable fine-grained measurements of the vari-
ous modules. Measurements include not only clock time, but also insightful hardware
counters such as cache and memory traffic statistics. In light of the preceding objective,
the framework should avoid OS system calls for these, and should use direct assembly
instructions.

3.1. Interface
The framework is a threadpool that has separate interfaces for the program and the
scheduler (see Fig. 3). The programming interface allows the specification of tasks to
be executed and the ordering constraints between them, while the scheduler interface
allows the specification of the ordering policy within the allowed constraints.
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Fig. 3. Interface for the program and scheduling modules.

Programs: Nested parallel programs, with no other synchronization primitives, are
composed from tasks using fork and join constructs, which correspond to the fork and
join points in the computation model defined in Section 2 and illustrated in Fig. 2(left).
A parallel for primitive built with fork and join is also provided.

A computation is specified with classes that inherit the Job class. Each inherited
class of the Job class overrides a method to specify some sequential code that always
logically terminates in a fork or a join call. Further, this is the only place where fork
and join calls are allowed. An instance of a class derived from the Job class is identi-
fied with a strand. Different strands nested immediately within a task correspond to
distinct instances of a derived Job class. The arguments passed to a fork call are (i)
a list of instances of the Job class that specfies the first strand in the subtasks that
constitute the parallel block it starts, and (ii) an instance of the Job class that specifies
the continuation strand to be executed after the corresponding join. Thus, a task as
defined in the computation model corresponds to the composition of several instances
of the Job class, one for each strand in it. At times, we loosely refer to the task cor-
responding to an instance of Job class. This should be taken to mean the task within
which the strand corresponding to the instance of the Job class is immediately nested.
This interface could be readily extended to handle non-nested parallel constructs such
as futures [Spoonhower et al. 2009] by adding other primitives to the interface beyond
fork and join.

The interface allows extra annotations on a task such as its size, which is required
by space-bounded schedulers. Such tasks inherit a derived class of Job class, the ex-
tensions in the derived class specifying the annotations. For example, the class SBJob
suited for space-bounded schedulers is derived from Job by adding two functions—
size(uint) and strand size(uint)—that allow the annotations of the job size. These
methods specify the size as function of an abstract parameter called block size. The
function itself is independent of the machine. When called with the block size set to
the actual size of cache blocks on the target machine, the function returns the space
used on the machine. Specifying the size as a function is particularly useful for ex-
pressing the impact of block sizes on the footprints of sparse data layouts.
Scheduler: The scheduler is a concurrent module that handles queued and live tasks
(as defined in Section 2) and is responsible for maintaining its own queues and other
internal shared data structures. The module interacts with the framework that con-
sists of a thread attached to each processing core on the machine, through an interface
with three call-back functions.
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— Job* get (ThreadIdType): This is called by the framework on behalf of a thread at-
tached to a core when the core is ready to execute a new strand, after completing
a previously live strand. The function may change the internal state of the sched-
uler module and return a (possibly null) Job so that the core may immediately begin
executing the strand. This function specifies core for the strand.

— void done(Job*,ThreadIdType) This is called when a core finishes the execution of a
strand. The scheduler is allowed to update its internal state to reflect this completion.

— void add(Job*,ThreadIdType): This is called when a fork or join is encountered. In
case of a fork, this call-back is invoked once for each of the newly spawned tasks.
For a join, it is invoked for the continuation task of the join. This function decides
where to enqueue the job.

Other auxiliary parameters to these call-backs have been dropped from the above
description for clarity and brevity. An argument of type Job* passed to these functions
may be an instance of one of the derived classes of Job* that carries additional infor-
mation helpful to the scheduler. Appendix B presents an example of a work-stealing
scheduler implemented in this scheduler interface.
Machine configuration: The interface for specifying machine descriptions accepts
a description of the cache hierarchy: number of levels, fanout at each level, and cache
and cache-line size at each level. In addition, a mapping between the logical numbering
of cores on the system to their left-to-right position as a leaf in the tree of caches must
be specified. For example, Fig. 4 is a description of one Nehalem-EX series 4-socket
× 8-core machine (32 physical cores) with 3 levels of caches as depicted in Fig. 1(a).
This specification of cache sizes assumes inclusive caches. The interaction between
non-inclusive caches and the schedulers we use is complicated. One way to use this
interface to describe non-inclusive caches could be to specify the size of a cache in the
interface to be the sum of its size and that of all the caches below it.

3.2. Implementation
The runtime system initially fixes a POSIX thread to each core. Each thread then
repeatedly performs a call (get) to the scheduler module to ask for work. Once assigned
a task and a specific strand inside it, the thread completes the strand and asks for more
work. Each strand either ends in a fork or a join. In either scenario, the framework
invokes the done call back. For a fork (join), the add call-back is invoked to let the
scheduler add new tasks (the continuation task, respectively) to its data structures.

All specifics of how the scheduler operates (e.g., how the scheduler handles work
requests, whether it is distributed or centralized, internal data structures, where mu-
tual exclusion occurs, etc.) are relegated to scheduler implementations. Outside the
scheduling modules, the runtime system includes no locks, synchronization, or system
calls (except during the initialization and cleanup of the thread pool), meeting our
design objective.

3.3. Measurements

Active time and overheads: Control flow on each thread moves between the pro-
gram and the scheduler modules. Fine-grained timers in the framework break down
the execution time into five components: (i) active time—the time spent executing the
program, (ii) add overhead, (iii) done overhead, (iv) get overhead, and (v) empty queue
overhead. While active time depends on the number of instructions and the commu-
nication costs of the program, add, done and get overheads depend on the complexity
of the scheduler, and the number of times the scheduler code is invoked by forks and
joins. The empty queue overhead is the amount of time the scheduler fails to assign
work to a thread (get returns null). Any one thread taking longer than others would
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int num_procs=32;
int num_levels = 4;
int fan_outs[4] = {4,8,1,1};
long long int sizes[4] = {0, 3*(1<<23), 1<<18, 1<<15};
int block_sizes[4] = {64,64,64,64};
int map[32] = {0,4,8,12,16,20,24,28,

2,6,10,14,18,22,26,30,
1,5,9,13,17,21,25,29,
3,7,11,15,19,23,27,31};

Fig. 4. Specification entry for a 32-core Xeon R© machine depicted in Fig. 1(a).

keep the queues of all the other threads empty adding to their empty queue overhead.
Thus, the average empty queue time captures the load balancing capability of the
scheduler. In most of the results in Section 5, we usually report two numbers: active
time averaged over all threads and the average overhead, which includes measures
(ii)–(v). Note that while we might expect this partition of time to be independent, it
is not so in practice—the background coherence traffic generated by the scheduler’s
bookkeeping may adversely affect active time. The timers have very little overhead in
practice—less than 1% in most of our experiments.
Measuring hardware counters: Modern multicores are equipped with hardware
counters that can provide various performance statistics such as the number of cache
misses at various levels. Such counters, however, are somewhat challenging to use.
Appendix C details the specific methodology we used for the Intel R© Nehalem-EX ar-
chitecture.

4. SCHEDULERS
In this section, we will define the class of space-bounded schedulers and describe the
schedulers we compare using our framework.

4.1. Space-bounded Schedulers
Space-bounded schedulers are designed to achieve good cache performance on PMHs
and use the sizes of tasks and strands to choose a schedule mapping the hierarchy
of tasks in a nested parallel program to the hierarchy of caches. They have been de-
scribed previously in [Chowdhury et al. 2010] and [Blelloch et al. 2011]. The definitions
in [Chowdhury et al. 2010] are not complete in that they do not specify how to han-
dle “skip level” tasks (described below). Our earlier definition [Blelloch et al. 2011]
handled skip level tasks, but was more restrictive than necessary, ruling out practi-
cal variants, as discussed below. Here, we provide a slightly broader definition for the
class of space-bounded schedulers that allows for practical variants, while retaining
the strong analytical bounds on cache misses that are the hallmark of the class of
space-bounded schedulers. Specifically, our new definition provides more flexibility in
the scheduling of strands by slightly relaxing the size restrictions for strands (through
a new parameter µ). We also allow strand sizes to be annotated directly rather than
inheriting the size of the enclosing task.

Informally, a space-bounded schedule satisfies two properties: (i) Anchored: Each
task t gets “anchored” to a smallest possible cache that is larger than its size—strands
within t can only be scheduled on cores in the tree rooted at the cache; and (ii) Bounded:
At any point in time, the sum of the sizes of all tasks and strands occupying space in
a cache is at most the size of the cache. These two conditions (when formally defined)
are sufficient to imply strong bounds on the number of cache misses at every level in
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the tree of caches. A good space-bounded scheduler would also handle load balancing
subject to anchoring constraints to quickly complete execution.

More formally, a space-bounded scheduler is parameterized by a global dilation pa-
rameter 0 < σ ≤ 1 and machine parameters {Mi, Bi, Ci, fi}. We will need the following
terminologies for the definition (which are both simplified and generalized from [Blel-
loch et al. 2011]).
Task Size and Strand Size: The size of a task (strand) is defined as a function of
cache-line size B, independent of the scheduler. Let loc(t;B) denote the set of distinct
cache lines touched by instructions within a task t. Then S(t;B) = |loc(t;B)| ·B denotes
the size of t. The size of a strand is defined in the same way. While results in [Blelloch
et al. 2011] show that it is not necessary for the analytical bounds that strands be al-
lowed to have their own size, and indeed strands with different sizes could be wrapped
in tasks, where applicable this flexibility reduces runtime overhead.1 Note that even
strands immediately nested within the same task may have different sizes.
Cluster: For any cache Xi, its cluster is the set of caches and cores nested below Xi.
Let P (Xi) denote the set of cores in Xi’s cluster.
Befitting Cache: Given a particular cache hierarchy and dilation parameter σ ∈ (0, 1],
we say that a level-i cache befits a task t if σMi−1 < S(t, Bi) ≤ σMi. The dilation
parameter determines which tasks are “maximal”.
Maximal Task: We say that a task t with parent task t′ is level-i maximal if and only
if a level-i cache befits t but not t′, i.e., σMi−1 < S(t, Bi) ≤ σMi < S(t′, Bi). Although
it might seem natural to set σ = 1, we will see that setting it to a lower value like
0.5 allows multiple tasks to be anchored to a cache enabling greater load balancing
flexibility (at a cost to locality).
Anchored: A task t with strand set L(t) is said to be anchored to level-i cache Xi (or
equivalently to Xi’s cluster) if and only if (i) it is executed entirely in the cluster, i.e.,
{core(`)|` ∈ L(t)} ⊆ P (Xi), and (ii) the cache befits the task. Anchoring prevents the
migration of tasks to a different cluster or cache. The advantage of anchoring a task
to a befitting cache is that once it loads its working set, it can reuse the working set
without the risk of losing it from the cache. If a task is not anchored anywhere, for
notational convenience we assume it is anchored at the root of the tree.
Cache-occupying tasks: For a level-i cache Xi and time τ , the set of cache-
occupying tasks, denoted by Ot(Xi, τ), are the tasks that consume space in the cache
at time τ . The precise definition depends on whether the cache is inclusive or non-
inclusive. For an inclusive cache, Ot(Xi, τ) is the union of (a) the maximal tasks live at
time τ that are anchored to Xi, and (b) the maximal tasks live at time τ that are an-
chored to any cache below Xi in the hierarchy whose immediate parents are anchored
to a cache above Xi in the hierarchy. The tasks in (b) are called “skip level” tasks. For
a non-inclusive cache, only type (a) tasks are included in Ot(Xi, τ). Note that we need
account only for maximal tasks because any non-maximal task t′ is anchored to the
same cache as its closest enclosing maximal task t and loc(t′;B) ⊆ loc(t;B).
Cache-occupying strands: The set of cache-occupying strands for a cache Xi at
time τ , denoted by Ol(Xi, τ), is the set of strands {`} such that (a) ` is live at time τ (b)
` is executed below Xi, i.e., core(`) ∈ P (Xi), and (c) `’s task is anchored strictly above
Xi.

A space-bounded scheduler for a particular cache hierarchy is a scheduler param-
eterized by σ ∈ (0, 1] that satisfies the following two properties:

1On the other hand, it does require additional size information on programs—thus we view it as optional:
Any strand whose size is not specified is assumed by default to be the size of its enclosing task.
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— Anchored: Every subtask (recursively) of the root task is anchored to a befitting
cache.

— Bounded: At every time τ , for every level-i cache Xi, the sum of the sizes of cache-
occupying tasks and strands is at most Mi:

Σt∈Ot(Xi,τ)
S(t, Bi) + Σ

`∈Ol(Xi,τ)
S(`, Bi) ≤Mi. (1)

A key property of the definition of space-bounded schedulers in [Blelloch et al. 2011]
is that for any PMH and any level i, one can upper bound the number of level-i cache
misses incurred by executing a task on the PMH by Q∗(t;σMi, Bi), where Q∗ is the par-
allel cache complexity as defined in the Parallel Cache Complexity (PCC) framework
in [Simhadri 2013]. Roughly speaking, the parallel cache complexity Q∗ of a task t in
terms of a cache of sizeM and line size B is defined as follows. Decompose the task into
a collection of maximal subtasks that fit in M space, and “glue nodes” – instructions
outside these subtasks. For a maximal size M task t′, the parallel cache complexity
Q∗(t′;M ;B) is defined to be the number of distinct cache lines it accesses. The model
then pessimistically counts all memory instructions that fall outside a maximal sub-
task (i.e., glue nodes) as cache misses; and counts accesses to a cache line from logically
parallel maximal tasks multiple times. The total cache complexity of an algorithm is
the sum of the complexities of the maximal subtasks, and the memory accesses out-
side of maximal subtasks. Note that Q∗ is a program-centric or machine-independent
metric, capturing the inherent locality in a parallel algorithm [Blelloch et al. 2013;
Simhadri 2013].

THEOREM 4.1. Consider a PMH and any dilation parameter 0 < σ ≤ 1. Let t be a
task anchored to the root of the tree. Then the number of level-i cache misses incurred
by executing t with any space-bounded scheduler is at most Q∗(t;σMi, Bi), where Q∗ is
the parallel cache complexity as defined in the PCC framework in [Simhadri 2013].

The proof is a simple adaptation of the proof in [Blelloch et al. 2011] to account for
our more general definition. At a high level, the argument is that for any cache Xi, the
cache-occupying tasks and strands for Xi bring in their working sets into the cache
Xi exactly once because the boundedness property prevents cache overflows. Thus a
replacement policy that keeps these working sets in the cache until they are no longer
needed will incur no additional misses; because the PMH model assumes an ideal
replacement policy, it will perform at least as well.

Note that while setting σ to 1 yields the best bounds on cache misses, it also makes
load balancing harder. As we will see later, a lower value for σ like 0.5 enables greater
scheduling flexibility.

In the course of our experimental study, we found that the following minor modifica-
tion to the boundedness property of space-bounded schedulers improves their perfor-
mance. Namely, we introduce a new parameter µ ∈ (0, 1] (µ = 0.2 in our experiments)
and modify the boundedness property to be such that at every time τ , for every level-i
cache Xi:

Σt∈Ot(Xi,τ)
S(t, Bi) + Σ

`∈Ol(Xi,τ)
min{µMi, S(`, Bi)} ≤Mi, (2)

The minimum term with µMi is to enable several large strands to be explored si-
multaneously without their space measure taking too much of the space bound. To
understand the problem with Inequality 1 (i.e., no µ parameter), consider a typical
divide-and-conquer computation. The highest level of the recursion corresponds to a
very large task, with potentially large strands preceding each parallel recursion. Us-
ing Inequality 1, parallel scheduling is only allowed once the recursion gets far enough
so that the subproblems fit in cache, which greatly limits the parallelism at the be-
ginning of the computation. With Inequality 2 and µ � 1, the parallelism is exposed
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sooner (albeit at a cost to cache performance). This helps the scheduler to quickly tra-
verse the higher levels of recursion in the computation and reveal parallelism, so that
the scheduler can achieve better load balance.

Given this modified boundedness condition, it is easy to show that the bound in
Theorem 4.1 becomes Q∗(t;µσMi, Bi).

In addition to introducing space-bounded schedulers, Chowdhury et al. [Chowdhury
et al. 2010] propose two other approaches to scheduling: CGC (coarse-grained con-
tiguous) and CGC-on-SB (which combines CGC with space-bounded schedulers). CGC
schedules parallel loops and is designed to keep nearby blocks of iterations close to-
gether so they are run on the same cache. This can be simulated in our framework
by grouping iterations recursively as a tree, which is what we do. This means that for
us a loop of length n will require at least log n depth, while CGC technically allows a
loop in constant depth. For the modest number of cores we experiment with this will
not have much effect, but perhaps for a significantly larger number of cores it would
be worth considering directly scheduling loops as in CGC. CGC-on-SB is primarily a
mechanism for skipping levels in the cache. Our variant of space-bounded scheduler
already allows for level skipping.

4.2. Schedulers implemented

Space-bounded schedulers: SB and SB-D. We implemented a space-bounded
scheduler by constructing a tree of caches based on the specification of the target ma-
chine. Each cache is assigned one logical queue, a counter to keep track of “occupied”
space and a lock to protect updates to the counter and queue. Cores can be considered
to be leaves of the tree; when a scheduler call-back is issued to a thread, that thread
can modify an internal node of the tree after gathering all locks on the path to the
node from the core it is mapped onto. This scheduler accepts Jobs that are annotated
with task and strand sizes. When a new Job is spawned at a fork, the add call-back
enqueues it at the cluster where its parent was anchored. For a new Job spawned at a
join, add enqueues it at the cluster where the Job that called the corresponding fork of
this join was anchored.

A basic version of such a scheduler would implement logical queues at each cache as
one queue. However, this presents two problems: (i) It is difficult to separate tasks in
queues by the level of cache that befits it, and (ii) a single queue might be a contention
hotspot. To solve problem (i), behind each logical queue, we use separate “buckets” for
each level of cache below to hold tasks that befit those levels. Cores looking for a task
at a cache go through these buckets from the top (bucket corresponding to the cache
immediately below) to the bottom (bucket correponding to the smallest cache in the
hierarchy). We refer to this variant as the SB scheduler. To solve problem (ii) involving
queueing hotspots, we replace the top bucket with a distributed queue—one queue for
each child cache—like in the work-stealing scheduler. We refer to the SB scheduler
with this modification as the SB-D scheduler.
Work-Stealing scheduler: WS. A basic work-stealing scheduler based on Cilk++
[Blumofe and Leiserson 1999] is implemented and is referred to as the WS scheduler.
Since the Cilk++ runtime system is built around work-stealing and deeply integrated
and optimized exclusively for it, we focus our comparison on the WS implementation
in our framework for fairness and to allow us to implement variants. The head-to-
head micro-benchmark study in Section 5 between our WS implementation and CilkTM

Plus (the commercial version of Cilk++) suggests that, for these benchmarks, WS well-
represents the performance of Cilk++’s work-stealing.

We associate a double-ended queue (dequeue) of ready tasks with each core. The
function add enqueues new tasks (actually the first strand in the task) spawned on a
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core to the bottom of its dequeue. When in need of work, the core uses get to remove a
task from the bottom of its dequeue. If its dequeue is empty, it chooses another dequeue
uniformly at random, and steals the work by removing a task from the top of that
core’s dequeue. In contrast with Cilk++ where the core that executes the last task to
join carries on with the continuation strand, our implementation of WS enqueues the
continuation strand at the bottom of the queue of the core that executes the last task to
join. While it is possible for the same core to immediately dequeue and proceed with the
continuation, the separate enqueue and dequeue calls occasionally allow other cores
to steal the continuation from the queue. However, this does not significantly affect
the number of cache misses in relation to the estimate given by the parallel cache
complexity metric, as this metric does not count cache reuse between a parallel block
and its continuation.

The only contention in this type of scheduler is on the distributed dequeues—there is
no other centralized data structure. To implement the dequeues, we employed a simple
two-locks-per-dequeue approach, one associated with the owning core, and the second
associated with all cores currently attempting to steal. Remote cores need to obtain
the second lock before they attempt to lock the first. Contention is thus minimized for
the common case where the core needs to obtain only the first lock before it asks for
work from its own dequeue.
Priority Work-Stealing scheduler: PWS. Unlike in the basic WS scheduler, cores
in the PWS scheduler [Quintin and Wagner 2010] choose victims of their steals ac-
cording to the “closeness” of the victims in the socket layout. Dequeues at cores that
are closer in the cache hierarchy are chosen with a higher probability than those that
are farther away, in order to improve scheduling locality. On the other hand, the in-
crease in probability is bounded in order to retain the good load balancing properties
of work-stealing schedulers.

5. EXPERIMENTS
The goal of our experimental study is to compare the performance of the four sched-
ulers on a range of benchmarks, varying the available memory bandwidth. Our pri-
mary metrics are runtime and L3 (last level) cache misses. We have found that the
cache misses on other levels do not vary significantly among the schedulers (within
5%). We will also validate our work-stealing implementation via a comparison with
the commercial CilkTM Plus scheduler. Next, we will quantify the overheads for space-
bounded schedulers, comparing them to the overheads for work-stealing schedulers.
Finally, we will study the performance impact of the key parameters µ and σ for space-
bounded schedulers.

5.1. Benchmarks
We use ten benchmarks in our study. The first two are synthetic micro-benchmarks
that mimic the behavior of memory-intensive divide-and-conquer algorithms. Because
of their simplicity, we use these benchmarks to closely analyze the behavior of the
schedulers under various conditions and verify that we get the expected cache behavior
on a real machine. The remaining eight benchmarks are a set of popular algorithmic
kernels.
Recursive repeated map (RRM): This benchmark takes two n-length arrays A and
B and a point-wise map function that maps elements of A to B. In our experiments
each element of the arrays is a double and the function simply adds one. RRM first
does a parallel point-wise map from A to B, and repeats the same operation multiple
times. It then divides A and B into two by some ratio (e.g., 50/50) and recursively calls
the same operation on each of the two parts. The base case of the recursion is set to
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some constant (1<<13 in our experiments) at which point the recursion terminates.
The input parameters are the size of the arrays n, number of repeats r, the cut ratio
f , and the base-case size. We set r = 3 (to imitate the number of times the input array
is touched in our quicksort), and f = 50% in the experiments unless otherwise noted.
RRM is a memory intensive benchmark because there is very little work done per
memory operation. However, once a recursive call fits in a cache (i.e., the cache size is
at least 16n bytes for subproblem size n), all remaining accesses are cache hits.
Recursive repeated gather (RRG): This benchmark is similar to RRM but instead
of doing a simple map it does a gather. In particular at any given level of the recursion
it takes three n-length arrays A, B and I and for each location i sets B[i] = A[I[i]
mod n]. The values in I are random integers. As with RRM after repeating r times it
splits the arrays in two and repeats on each part. RRG is even more memory intensive
than RRM because its accesses are random instead of linear. Again, however, once a
recursive call fits in a cache all remaining accesses are cache hits.
Quicksort: This is a parallel quicksort algorithm that both parallelizes the partition-
ing and the recursive calls, using a median-of-3 pivot selection strategy. It switches
to a version which parallelizes only the recursive calls for n < 128K and a serial ver-
sion for n < 16K. These parameters worked well for all the schedulers. We note that
our quicksort is about 2x faster than the Cilk code found in the Cilk+ guide [Leiser-
son 2010]. This is because it does the partitioning in parallel. It is also the case that
the divide does not exactly partition the data evenly, because it depends on how well
the pivot divides the data. For an input of size n the program has cache complexity
Q∗(n;M,B) = O(dn/Belog2(n/M)) and therefore is reasonably memory intensive.
Samplesort: This is the cache-optimal parallel Sample Sort algorithm described
in [Blelloch et al. 2010]. The algorithm splits the input of size n into

√
n subarrays,

recursively sorts each subarray, “block transposes” them into
√
n buckets and recur-

sively sorts these buckets. For this algorithm, Q∗(n;M,B) = O(dn/Be log2+(M/B) n/B)

making it relatively cache friendly, and optimally cache oblivious even.
Aware samplesort: This is a variant of sample-sort that is aware of the cache sizes.
In particular it moves elements into buckets that fit into the L3 cache and then runs
quicksort on the buckets. This is the fastest sort we implemented and is in fact faster
than any other sort we found for this machine. In particular it is about 10% faster than
the PBBS sample sort [Shun et al. 2012].
Quad-tree: This generates a quad tree for a set of n points in two dimensions. This
is implemented by recursively partitioning the points into four sets along the mid line
of each of two dimensions. When the number of points is less than 16K we revert to a
sequential algorithm.
Quickhull: This is a recursive two-way divide and conquer algorithm for finding
the convex hull of points on a 2-dimensional plane. The recursion is very similar to
quicksort. We switch to a serial version when the number of points is less than 16K.
Although the performance of this deterministic algorithm is bad for worst case in-
puts, it does reasonably well on most inputs. We use a set of n uniformly random
points on a 2-sphere as our input. For this input, the program has cache complexity
Q∗(n;M,B) = O(dn/Belog2(n/M)) and therefore is reasonably memory intensive.
Matrix multiplication: This benchmark is an 8-way recursive matrix multiplica-
tion. To allow for an in-place implementation, four of the recursive calls are invoked
in parallel followed by the other four. Matrix multiplication has cache complexity
Q∗(n;M,B) = (dn2/Be×dn/

√
Me). The ratio of instructions to cache misses is therefore

very high, about B
√
M , making this a very compute-intensive benchmark. We switch
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to serial Intel R© Math Kernel Library’s cblas dgemm matrix multiplication for sizes of
≤ 128× 128 to make use of the floating point SIMD operations.
Triangular Solver: This benchmark solves the equation UX = B for X, where U is
a dense upper triangular matrix of order n and B is an n ×m matrix. The algorithm
is recursive. It first partitions U into two upper triangular matrices U1, U2 of order n/2
and a square matrix U ′ of size n/2× n/2, and B into four matrices B11, B12, B21, B22 of
size n/2×m/2 each. Then it solves for U2X21 = B21 and U2X22 = B22 in parallel, uses
the value of X21 and X22 along with U ′ to update B11, B12 using matrix multiplication
and then solves for U1X11 = B11 and U1X12 = B12 in parallel. The asymptotic cache
complexity is the same as that for matrix multiplication, and its depth is O(n log n).
While the natural DAG for this computation has depth O(n), expressing it as a strict
fork-join program introduced false dependencies and increases its depth. Also, just
as in the case of matrix multiplication, we switch to Intel R© Math Kernel Library’s
LAPACKE dtrtrs routine for leaf nodes of size less than 128× 128.
Cholesky Factorization:. This benchmark factorizes a dense symmetric positive def-
inite matrix A into the form LLT , where L is a lower triangular matrix. Since A is
symmetric, only one of the upper or lower triangular parts is required as input. The
algorithm is recursive. It partitions upper triangular matrix A of order n into two up-
per triangular matrixes A1, A2 of order n/2 and a square matrix A′ of size n/2 × n/2.
Recursively, it factorizes A1, uses the factor to do a triangular solve on A′ followed by
a matrix multiplication on to A2, and then factorizes A2. The asymptotic cache com-
plexity of the algorithm is the same as that of matrix multiplication, and the depth of
the algorithm is O(n log2 n). As in the previous case, false dependencies introduced by
using a fork-join model increase the depth by a factor of O(log2 n). The leaf nodes of
the recursion use the LAPACKe dpotrf factorization routine.

5.2. Experimental Setup
We ran the benchmarks on a 4-socket 32-core Xeon R© 7560 machine (Nehalem-EX ar-
chitecture), as described in Fig. 1(a) and Fig. 4, using each of the four schedulers. Each
core uses 2-way hyperthreading. The last level cache on each socket is a 24MB L3
cache that is shared by eight cores. Each of the four sockets on the machine has mem-
ory links to distinct DRAM modules. The sockets are connected with the Intel R© QPI
interconnect. Memory requests from a socket to a DRAM module connected to another
socket pass through the QPI, the remote socket, and the remote memory link. To pre-
vent excessive TLB cache misses, we use Linux hugepages of size 2MB to pre-allocate
the space required by the algorithms. We set the value of vm.nr hugepages to 10, 000
using sysctl to create a pool of huge pages. We use the hugectl tool [Litke et al. 2006]
to execute memory allocations with hugepages.

Monitoring L3 cache. We focus on L3 cache misses, the most expensive cache level
before DRAM on our machine. While we report runtime subdivided into application
code and scheduler code, such partitioning was not possible for L3 misses because of
software limitations. Even if it were possible to count them separately, it would be
difficult to interpret the results because of the non-trivial interference between the
data cached by the program and by the scheduler. Further details can be found in
Appendix C.

Controlling bandwidth. As part of our study, we quantify runtime improvements
varying the available memory bandwidth per core (the “bandwidth gap”). This is moti-
vated by trends towards increasing the number of cores per socket more rapidly than
the available memory bandwidth, thereby increasing the bandwidth gap. We control
the memory bandwidth available to the program as follows. Because the QPI has high
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bandwidth, if we treat the RAM as a single functional module, the bandwidth be-
tween the L3 and the RAM depends on the number of memory links used, which in
turn depends on the mapping of pages to the DRAM modules. If all the pages used
by a program are mapped to DRAM modules connected to one socket, the program
effectively utilizes one-fourth of the memory bandwidth. On the other hand, an even
distribution of pages to DRAM modules across the sockets provides the full bandwidth
to the program. One way to map a page to a DRAM module associated with a specific
socket is to write to a freshly allocated page from a core in the socket. The numactl
tool [Kleen 2004] can be also used to control this mapping. When memory is mapped
to the modules on only one socket, the latency of a memory access for the other three
sockets increases (by about a factor of two [Molka et al. 2009]). We disregard this non-
uniformity since the workloads are primarily constrained by bandwidth as opposed to
latency. Further, the actual bandwidth available depends on many factors involved in
the configuration of the hardware [Fujitsu Technology Solutions 2010] and the one-
fourth bandwidth estimate for this configuration is a rough estimate.

Code. We use the same code (i.e., we do not change the task specification) for the
applications/algorithms across the schedules for all benchmarks, except for the Cilk
Plus code. One program for each benchmark specified through the fork-join interface
is passed to all the schedulers. The code for the Cilk Plus interface is kept as close
to the code in our programming interface as possible. The code always includes the
space annotations, but those annotations are ignored by the schedulers that do not
need them. The code was compiled with a Cilk Plus fork of gcc 4.8.0 compiler.

5.3. Results
We use σ = 0.5 and µ = 0.2 in the SB and SB-D schedulers, after some experimentation
with the parameters, unless otherwise noted. In the PWS scheduler, we set the proba-
bility of an intra-socket steal to be 10 times that of an inter-socket steal. All numbers
reported in this paper are the average of at least 10 runs with the smallest and largest
readings across runs removed. The largest reading is removed to eliminate the possi-
bility of a background process (e.g., daemon) interfering with the timing. The smallest
reading is removed to compensate for this. The results are not sensitive to this partic-
ular choice of reporting. Although all the runs are short (on the order of one second),
the duration of the runs is highly reproducible, with standard deviations under 5% for
all experiments (based on 25 runs) and around 1-2% for most experiments.

Synthetic benchmarks. Fig. 5 and Fig. 6 show the number of L3 cache misses of
RRM and RRG, respectively, along with their active times and scheduling overheads
on 64 hyperthreads at different bandwidth values. In addition to the four schedulers
discussed in Section 4.2 (WS, PWS, SB and SB-D), we include the Cilk Plus work-
stealing scheduler in these plots to validate our WS implementation. We could not
separate overhead from time in Cilk Plus because it does not supply such information.

These plots show that the space-bounded schedulers incur roughly 42–44% fewer
L3 cache misses than the work-stealing schedulers. As expected, the number of L3
misses does not significantly depend on the available bandwidth. On the other hand,
the active time is most influenced by the number of instructions in the benchmark
(constant across schedulers) and the costs incurred by L3 misses. The extent to which
improvements in L3 misses translates to an improvement in active time depends on
the memory bandwidth given to the program. When the bandwidth is low (25%), the
active times are almost directly proportional to the number of L3 cache misses, while
at full bandwidth, the active times are far less sensitive to misses.

The difference in L3 cache costs of space-bounded and work-stealing schedulers
roughly corresponds to the difference between the cache complexity of the program
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Fig. 5. RRM on 10 million double elements, varying the memory bandwidth. Left axis is running time in
seconds. Right axis is L3 misses in millions.
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Fig. 6. RRG on 10 million double elements, varying the memory bandwidth. Left axis is running time in
seconds. Right axis is L3 misses in millions.

with a cache of size σM3 (M3 being the size of L3) and a cache of size M3/16 (be-
cause eight cores with sixteen hyperthreads share an L3 cache). In other words, space-
bounded schedulers share the cache constructively while work-stealing schedulers ef-
fectively split the cache between the cores. To see this, consider our RRM benchmark.
Each Map operation that does not fit in L3 touches 2 × 107 × 8 = 160 million bytes of
data, and RRM has to unfold four levels of recursion before it fits in σM3 = 0.5× 24MB
= 12MB space with space-bounded schedulers. Therefore, because the cache line size
is B3 = 64 bytes, space-bounded schedulers incur about (160×106×3×4)/64 = 30×106

cache misses, which matches closely with the results in Fig. 5. On the other hand, the
number of cache misses of WS scheduler (55 million) corresponds to unfolding about
7 levels of recursions, three more than with space-bounded schedulers. Loosely speak-
ing, this means that the recursion has to unravel to one-sixteenth the size of L3 before
work-stealing schedulers start preserving locality.

To support this observation, we ran the RRM and RRG benchmarks varying the
number of cores per socket; the results are in Fig. 7. The number of L3 cache misses
when using SB and SB-D schedulers do not change with the number of cores, because
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Fig. 7. L3 cache misses for RRM and RRG, varying the number of cores used per socket.

cores constructively share the L3 cache independent of their number. However, when
using WS and PWS schedulers, the number of L3 misses is highly dependent on the
number of cores: when fewer cores are active on each socket, there is lesser contention
for space in the shared L3 cache. Thus, again the experimental results coincide with
the theoretical analysis.

These experiments indicate that the advantages of space-bounded schedulers over
work-stealing schedulers improve as (i) the number of cores per socket goes up, and (ii)
the bandwidth per core goes down. At 8 cores there is a 30–35% reduction in L3 cache
misses. At 64 cores we would expect (by the analysis) over a 60% reduction.

Algorithms. Fig. 8 and Fig. 9 show the active times, scheduling overheads, and L3
cache misses of the eight algorithmic kernels at 100% and 25% bandwidth, respec-
tively, with 64 hyperthreads. These plots show that the space-bounded schedulers in-
cur significantly fewer L3 cache misses on 7 of the 8 benchmarks, with up to 65% on
matrix multiply. The cache-oblivious sample sort is the sole benchmark with little dif-
ference in L3 cache misses across schedulers. Given the problem size n = 108 doubles
and sample sort’s

√
n-way recursion, all subtasks after one level of recursion are much

smaller than the L3 cache. Thus, all four schedulers avoid overflowing the cache. Be-
cause of their added overhead relative to work-stealing, the space-bounded schedulers
are 7% slower for this benchmark.

As with the synthetic benchmarks, the sensitivity of active time to L3 cache misses
depends on whether the algorithm is memory-intensive enough to stress the band-
width. Matrix Multiplication, although benefitting from space-bounded schedulers in
terms of cache misses, shows no significant improvement in active time at full band-
width because it is very compute intensive. However, when the machine bandwidth
is reduced to 25%, Matrix Multiplication is bandwidth bound and the space-bounded
schedulers are about 50% faster than work-stealing. The sorting based benchmarks—
Quicksort, Aware Samplesort, Quickhull and Quad-tree—are memory intensive and
see improvements of up to 25% in running time at full bandwidth (Fig. 8). At 25%
bandwidth, the improvement is even more significant and up to 40% (Fig. 9).

The behavior of Triangular solver and Cholesky factorization is very similar to that
of matrix multiplication in terms of active time – insensitive to improvement in cache
misses at full bandwidth and almost proportional to L3 cache misses at 25% band-
width. This is to be expected as their work and cache complexities are very similar.
However, Cholesky factorization has significantly higher overhead (27% in the worst
case), most of which is due to empty queue time – 380 ms of 390 ms for WS scheduler
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Fig. 8. Active times, overheads, and L3 cache misses for the 8 benchmark algorithms at full bandwidth.
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Fig. 9. Active times, overheads, and L3 cache misses for the 8 benchmark algorithms at 25% bandwidth.

and 790 ms of 800 ms for SB scheduler at full bandwidth. This is because the recur-
sive Cholesky factorization is serial at O(n log2 n/L) points along the critical path in
its DAG, where L is the order of the base case of the recursion. At these points, all
cores but one are idle with any scheduler. The empty queue time for SB scheduler is
significantly larger because it anchors each task based on its size, and the size of the
tasks near these effectively serial points in the DAG is small. Smaller tasks are an-
chored to smaller caches with fewer cores, leaving other cores idle. WS scheduler is
not constrained by the anchoring property and can use more cores around these serial
points. This overhead may be reduced to some extent by falsely reporting a greater
size for Cholesky tasks at lower levels of recursion to force SB scheduler to be more
aggressive at load balancing. Further, Cholesky factorization could also achieve bet-
ter performance through a relaxation of false dependencies introduced by expressing
the algorithm in the fork-join paradigm using techniques recently introduced by [Tang
et al. 2015]. This would reduce the depth of the algorithm to O(n/L) and remove all
serial points in the DAG except the start and the end.

ACM Transactions on Parallel Computing, Vol. 3, No. 1, Article xx, Publication date: January 2016.



Experimental Analysis of Space-Bounded Schedulers xx:21

0	  
0.02	  
0.04	  
0.06	  
0.08	  
0.1	  

0.12	  
0.14	  
0.16	  
0.18	  

SB	   SB-‐
D	  

SB	   SB-‐
D	  

SB	   SB-‐
D	  

SB	   SB-‐
D	  

SB	   SB-‐
D	  

SB	   SB-‐
D	  

Quicksort	  
(100M	  
double)	  

Aware	  
SampleSort	  
(100M	  
double)	  

Quad-‐Tree	  
(100M	  
double)	  

quickHull	  
(10M	  2D	  
points)	  

MatMul	  
(5.12K	  X	  
5.12K	  
double)	  

TRS	  (6K	  
double)	  

μ=0.2,	  Overhead	  (seconds)	  

μ=1,	  Overhead	  (seconds)	  

Fig. 10. Overhead of the algorithms for µ = 0.2 and 1.0 at full bandwidth. The overheads of Samplesort
and Cholesky are much higher and not shown here.
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Fig. 12. Empty queue times for QuickHull, varying σ.

Overheads and the strand boundedness parameter µ. As noted earlier, our definition
of space-bounded schedulers slightly relaxes the size restrictions for strands through
a new parameter µ (Inequality 2 vs. Inequality 1). Fig. 10 shows the SB and SB-D
scheduling overheads for six of the algorithms when µ = 0.2 and when µ = 1. Note
that µ = 1 depicts the case without our added µ parameter. The figure shows that the
µ = 0.2 case reduces the overheads by up to a factor of 3. Fig. 11 shows the sensitivity
of quicksort’s overhead to various settings of µ. While for this particular algorithm,
µ = 0.5 is the best of these settings, we have found µ = 0.2 to be a good choice when
considering all of the algorithms in our study.

Load balance and the dilation parameter σ. The choice of σ, determining which tasks
are maximal, is an important parameter affecting the performance of space-bounded
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Fig. 13. Empty queue times and L3 cache misses for Cholesky, varying σ.

schedulers, especially their ability to load balance. If σ were set to 1, it is likely that one
task that is about the size of the cache gets anchored to the cache, leaving little room
for other tasks or strands. This adversely affects load balance, and we would expect to
see greater empty queue times. On the other hand, if σ were set to a lower value like
0.5, then each cache can allow more than one task or strand to be simultaneously an-
chored, leading to better load balance. Fig. 12 gives an example algorithm (QuickHull)
demonstrating this. Fig. 13, on the other hand, gives an example algorithm (Cholesky)
where increasing σ has little impact on empty queue times. In such cases, a larger σ
allows a larger (fitting) subcomputation to be pinned to a cache, thereby improving
cache performance, as shown by the 40% decrease in L3 cache misses.

Note that if σ were set too low (closer to 0), then the number of levels of recursion
until the space-bounded schedulers preserve locality would increase, resulting in less
effective use of shared caches.

Comparison of scheduler variants. Looking at the results, we find that while
PWS can reduce the number of cache misses by up to 10% compared to standard WS,
it has negligible impact on running times for the benchmarks studied. Similarly, while
SB-D is designed to remove a serial bottleneck in SB scheduler, the runtime (and
cache miss) performance of the two are nearly identical. This is because our bench-
marks call the scheduler sufficiently infrequently so that the performance difference
of each invocation is not noticeable in the overall running time.

6. CONCLUSION
We developed a framework for comparing schedulers, and deployed it on a 32-core
machine with 3 levels of caches. We used it to compare four schedulers, two each of
work-stealing and space-bounded types. As predicted by theory, we did notice that
space-bounded schedulers demonstrate some, or even significant, improvement over
work-stealing schedulers in terms of cache miss counts on shared caches for most
benchmarks. In memory-intensive benchmarks with low instruction count to cache
miss count ratios, an improvement in L3 miss count because of space-bounded sched-
ulers can improve running time, despite their added overheads. On the other hand,
for compute-intensive benchmarks or benchmarks with highly optimized cache com-
plexities, work-stealing schedulers are slightly faster, because of their low scheduling
overhead. Improving the overhead of space-bounded schedulers further could make
the case for space-bounded schedulers stronger and is an important direction for fu-
ture work.

Our experiments were run on an Intel R© multicore with (only) 8 cores per socket, 32
cores total, and one level of shared cache (the L3). The experiments make it clear that
as the core count per socket goes up (as is expected with each new generation), the
advantages of space-bounded schedulers should increase due to the increased benefit
of avoiding cache conflicts among the many unrelated threads sharing the limited on-
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chip cache capacity. As the core count per socket goes up, the available bandwidth per
core tends to decrease, again increasing space-bounded schedulers’ advantage. We also
anticipate a greater advantage for space-bounded schedulers over work-stealing sched-
ulers when more cache levels are shared and when the caches are shared amongst a
greater number of cores. Such studies are left to future work, when such multicores
become available. On the other hand, compute-intensive benchmarks will likely con-
tinue to benefit from the lower scheduling overheads of work-stealing schedulers, for
the next few generations of multicores, if not longer.

APPENDIX
A. ILLUSTRATION OF THE PROGRAMMING INTERFACE
Fig. 14 depicts the quicksort algorithm described in Section 5.1 implemented in the
interface described in Section 3.1. Not all subroutines are shown. The algorithm is
implemented as a derived class of the SizedJob class which in turn is derived from
Job. An instance of QuickSort class constitutes a task, and the size method returns the
space footprint of the task.

B. WORK STEALING SCHEDULER
Fig. 15 provides an example of a work-stealing scheduler implemented using the sched-
uler interface presented in Section 3.1. The Job* argument passed to the add and done
functions may be instances of one of the derived classes of Job* that carry additional
information helpful to the scheduler.

C. MEASURING HARDWARE COUNTERS
Multicore processors based on newer architectures like Intel R© Nehalem-EX and
Sandybridge contain numerous functional components such as cores (which includes
the CPU and lower level caches), DRAM controllers, bridges to the inter-socket inter-
connect (QPI) and higher level cache units (L3). Each component is provided with a
performance monitoring unit (PMU)—a collection of hardware registers that can track
statistics of events relevant to the component.

For instance, while the core PMU on Xeon R© 7500 series (our experimental setup,
see Fig. 1(a)) is capable of providing statistics such as the number of instructions, L1
and L2 cache hit/miss statistics, and traffic going in and out, it is unable to monitor L3
cache misses (which constitute a significant portion of active time). This is because L3
cache is a separate unit with its own PMU(s). In fact, each Xeon R© 7560 die has eight
L3 cache banks on a bus that also connects DRAM and QPI controllers (see Fig. 16).
Each L3 bank is connected to a core via buffered queues. The address space is hashed
onto the L3 banks so that a unique bank is responsible for each address. To collect L3
statistics such as L3 misses, we monitor PMUs (called C-Boxes on Nehalem-EX) on all
L3 banks and aggregate the numbers in our results.

Software access to core PMUs on most Intel R© architectures is well supported by sev-
eral tools including the Linux kernel, the Linux perf tool, and higher level APIs such
as libpfm [Perfmon2 2012]. We use the libpfm library to provide fine-grained access to
the core PMU. However, access to uncore PMUs—complex architecture-specific compo-
nents like the C-Box—is not supported by most tools. Newer Linux kernels (3.7+) are
incrementally adding software interfaces to these PMUs at the time of this writing,
but we are only able to make program-wide measurements using this interface rather
than fine-grained measurements. For accessing uncore counters, we adapt the Intel R©
PCM 2.4 tool [Intel 2013b].

To count L3 cache misses, the uncore counters in the C-boxes were programmed us-
ing the Intel R© PCM tool to count misses that occur due to any reason (LLC MISSES
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class QuickSort : public SizedJob {
E *A, *B; int n; int *counts; E pivot; int numBlocks;
BinPred f; bool invert; int stage;

public:
QuickSort (E* A_, int n_, BinPred f_, E* B_,

int stage_=0, bool invert_=0, bool del=true)
: HR2Job (del), A(A_), n(n_), f(f_), B(B_), invert(invert_), stage(stage_) {}

QuickSort (QuickSort *from, bool del=true)
: HR2Job (del), A(from->A), B(from->B), n(from->n), f(from->f),
pivot(from->pivot), counts(from->counts), invert(from->invert),
numBlocks(from->numBlocks), stage(from->stage + 1) {}

lluint size (const int block_size) { // Space Annotation
if (n < QSORT_SPLIT_THRESHOLD) // Base case
return round_up(sizeof(E)*n,block_size); // Size of the base case (strand)

else return 2*round_up(sizeof(E)*n,block_size); // Size of the recursive task.
} // Smaller order terms ignored.
void function () {
if (stage == 0) {
if (n < QSORT_SEQ_THRESHOLD) {
seqQuickSort (A,n,f,B,invert);
join ();

} else if (n < QSORT_SPLIT_THRESHOLD) {
if (invert) { // copy elements if needed
for (int i=0; i < n; i++) B[i] = A[i]; A = B;

}
pair<E*,E*> X = split(A,n,f);
binary_fork (new QuickSort(A,X.first-A,f,B), new QuickSort(X.second,A+n-X.second,f,B),

new QuickSort(A,n,f,B,3));
} else {
pivot = getPivot(A,n,f);
numBlocks = min(126, 1 + n/20000);
counts = newA(int,3*numBlocks);
mapIdx(numBlocks, genCounts<E,BinPred>(A, counts, pivot, n, numBlocks, f),

new QuickSort(this), this);
}

} else if (stage == 1) {
int sum = 0;
for (int i = 0; i < 3; i++)
for (int j = 0; j < numBlocks; j++) {
int v = counts[j*3+i]; counts[j*3+i] = sum; sum += v;

}
mapIdx(numBlocks, relocate<E,BinPred>(A,B,counts,pivot,n,numBlocks,f), new QuickSort(this),this);

} else if (stage == 2) {
int nLess = counts[1]; int oGreater = counts[2]; int nGreater = n - oGreater;
free(counts);
if (!invert) // copy equal elements if needed
for (int i=nLess; i < oGreater; i++)
A[i] = B[i];

binary_fork (new QuickSort(B,nLess,f,A,0,!invert),
new QuickSort(B+oGreater,nGreater,f,A+oGreater,0,!invert),
new QuickSort(this));

} else if (stage == 3) {
join();

}
}

};
lluint round_up (lluint sz, const int blk_sz) {return (lluint)ceil(((double)sz/(double)blk_sz))*blk_sz;}

Fig. 14. QuickSort algorithm with space annotation.
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void WS_Scheduler::add (Job *job, int thread_id) {
_local_lock[thread_id].lock();
_job_queues[thread_id].push_back(job);
_local_lock[thread_id].unlock();

}
int
WS_Scheduler::steal_choice (int thread_id) {
return (int)((((double)rand())/((double)RAND_MAX))

*_num_threads);
}
Job* WS_Scheduler::get (int thread_id) {
_local_lock[thread_id].lock();
if (_job_queues[thread_id].size() > 0) {

Job * ret = _job_queues[thread_id].back();
_job_queues[thread_id].pop_back();
_local_lock[thread_id].unlock();
return ret;

} else {
_local_lock[thread_id].unlock();
int choice = steal_choice(thread_id);
_steal_lock[choice].lock();
_local_lock[choice].lock();
if (_job_queues[choice].size() > 0) {
Job * ret = _job_queues[choice].front();
_job_queues[choice].erase(_job_queues[choice].begin());
++_num_steals[thread_id];
_local_lock[choice].unlock();
_steal_lock[choice].unlock();
return ret;

}
_local_lock[choice].unlock();
_steal_lock[choice].unlock();

}
return NULL;

}
void WS_Scheduler::done (Job *job, int thread_id,

bool deactivate) {}

Fig. 15. WS scheduler implemented in scheduler interface.
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Fig. 16. Layout of 8 cores and L3 cache banks on a bidirectional ring in Xeon R© 7560. Each L3 bank hosts
a performance monitoring unit called C-box that measures traffic into and out of the L3 bank.
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- event code: 0x14, umask: 0b111) and L3 cache fills of missing cache lines in any
coherence state (LLC S FILLS - event code: 0x16, umask: 0b1111). Since the two
counts are complementary—one counts number of missing lines and other the number
of missing lines fetched and filled—we would expect them to be the same. Indeed, both
the numbers concur up to three significant digits in most cases. Therefore, only the L3
cache miss numbers are reported in this paper.
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