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Abstract—Thread schedulers are designed to dynamically
map parallel programs to processors to optimize performance
metrics including memory footprint, number of cache misses at
each cache level, and load balance, so as to minimize the total
running time of the program. Programs with dynamic memory
allocation pose particular challenges for thread schedulers, and
indeed prior schedulers that are provably cache- and time-
efficient on multi-level cache hierarchies require static memory
allocation. Not only do many thread schedulers fail to reuse
memory effectively, but there is often an inherent tradeoff
between parallelism and memory use in algorithms.

In this paper, we present the first runtime thread scheduler
for multi-level cache hierarchies, called the space-bounded
recursive-PDF scheduler, that is provably space-, cache-, and
time-efficient for parallel programs that dynamically allocate
memory. Our bounds hold for nested parallel programs with
good regularity as measured by the effective cache complexity—
a program-centric metric. The cache and time bounds are
asymptotically optimal, while the space bound is asymptotically
optimal for highly parallel and regular programs.

Keywords-Thread schedulers, Memory allocation, Space-
bounded schedulers, Work stealing, Cache hierarchies

I. INTRODUCTION

A popular and effective paradigm for programming shared

memory parellel processors is to use a language supporting

fine-grained nested parallel programming (e.g., Cilk++ [1],

X10 [2], NESL [3], Fork-Join Java [4], Habanero C [5])

in conjunction with a smart runtime thread scheduler that

maps program tasks to processing cores as the computation

unfolds. There has been significant work over the past 20

years on designing runtime thread schedulers and studying

their performance. Theoretical guarantees on running time

are typically provided via bounds on the program’s memory

footprint, number of cache misses, and load balance. While

early work often focused on multicores with a single level

of cache, recent work has focused on multi-level cache hi-

erarchies used in modern multicore processors (see Fig. 3c).

Challenges of Dynamic Memory Allocation. Programs

that dynamically allocate memory, either explicitly (e.g.,

malloc/free) or implicitly (in garbage collected languages),

pose particular challenges for thread schedulers. Consider a

nested-parallel version of the Quicksort algorithm in Fig. 1

written in the NESL language [3], [6]. At each level of

function Quicksort(A) =
if (#A < 2) then A
else let pivot = A[#A/2];

ls = {e in A| e < pivot};
eq = {e in A| e == pivot};
gr = {e in A| e > pivot};
ret = {Quicksort(v):v in [ls,gr]};

in ret[0] ++ eq ++ ret[1];

Figure 1: NESL code for dynamically allocated Quicksort

recursion, array A is split into three smaller arrays, ls,

eq and gr, which are recursively sorted (except for eq),

and put together before returning. Whereas a naive memory

allocation scheme might assign each of the O(n log n)
variables a different location, O(n) locations are sufficient

to execute this in parallel. The locations assigned to A and

temporary variables can be recycled after A is split, and

hence, one can use two arrays of size O(n) to hold subarrays

A and ls, eq and gr across all levels of recursion so that

they can be executed in parallel. At each level of recursion

the input subarray would be mapped to one chunk, and the

splits to the other chunk. At the next level of recursion, the

mapping to the memory chunks is reversed.

A smart thread scheduler should enable such an allocation

scheme that minimizes the memory footprint and uses the

reduced footprint to minimize cache misses. Namely, once

a subcomputation fits into a cache at a given level of the

multicore cache hierarchy, it should be executed by the

subset of the cores that share the cache incurring misses at

this cache only for the initial load. For example, if 15 cores

shared a 30MB L3 cache in Fig. 3c as in an Intel Xeon E7-

8870, the scheduler could map a subtask of quicksort with

1.5M integers — which requires two 6GB chunks for the

data, and three 6GB chunks for auxiliary index structures.

Moreover, for some algorithms, the appropriate memory

allocation can be part of a space vs. parallelism trade-off.
Consider a nested-parallel matrix multiplication of two n×n
matrices in which eight recursive calls to smaller matrix

multiplications on n/2 × n/2 matrices can be invoked in

parallel. This maximizes the available parallelism, but could

require up to Θ(n3) space as up to n3 partial results may be

live concurrently, e.g., if a breadth-first schedule were used.

An alternative is to limit the parallelism as in Figure 2.
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function MM(A,B,C) =
if (nr(A)<=k & nc(A)<=k & nc(B)<=k) then MM-Seq(A,B,C)
else if (nr(A)>=nc(A) & nr(A)>=nc(B))

then let (A1,A2) = split-rows(A);
(C1,C2) = split-rows(C);

C1 += MM(A1,B) || C2 += MM(A2,B)
in join-rows(C1,C2)

else if (nc(B)>=nr(A) & nc(B)>=nc(A))
then let (B1,B2) = split-cols(B);

(C1,C2) = split-cols(C);
C1 += MM(A,B1) || C2 += MM(A,B2)

in join-cols(C1,C2)
else let (A1,A2) = split-cols(A); // NO PARALLELISM

(B1,B2) = split-rows(B);
in C += MM(A1,B1); C += MM(A2,B)

Figure 2: Pseudocode for nested-parallel Matrix Multiplication
where minimizing space is prioritized over exposing parallelism.
Function calls separated by “||” are executable in parallel, while
“;” represents sequential composition.

Prior Work Falls Short. Our goal is to design a runtime

thread scheduler for multi-level parallel cache hierarchies

that is provably space-, cache-, and time-efficient for parallel

programs that dynamically allocate memory. Prior work has

achieved this for multicore processors with a single level of

private caches [7]–[9] or a single shared cache [10], [11].

For multi-level parallel cache hierarchies, prior work [12]–

[16] has provided provably cache- and time-efficient thread

schedulers only for programs that statically allocate mem-

ory, i.e., programs that do all heap allocation at the start of

execution and manage its thread-safety internally.

Among these, space-bounded schedulers [14], [15] for

parallel cache hierarchies (Fig. 3c) and parallel depth-first
(PDF) schedulers [10], [12] for machines with a single

shared cache (Fig.3b) are relevant to our context. The idea

of space-bounded schedulers is to “anchor” a set of tasks to

a cache that (just) fits the set, and then schedule all subtasks

on caches or cores below it in the hierarchy.

The PDF scheduler executes the DAG greedily prioritizing

instructions based on their order in a depth-first order.

Therefore, its space requirement is closely related to the

depth-first schedule, and exceeds it by the amount of space

required by the premature nodes that are executed out of

the depth-first order. If each instruction takes one step to

execute, the number of premature nodes is no more than

(p− 1)d for a depth d DAG on a p processor machine [10]

(see Fig 4). This limits the space of the PDF schedule

relative to the depth-first schedule if we limit the amount

of space dynamically allocated per instruction. For highly

parallel algorithms with low depth, such bounds on space

are very competitive. However, the amount of time an

instruction in a multi-level cache hierarchy takes depends

on the location of its data in the hierarchy. Therefore, a
more refined notion of the depth of a DAG is needed to

bound the space requirements of a PDF-like scheduler.

Our Results. In this paper, we present the first runtime

thread scheduler achieving our goal of provably space-,
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(a) A nested-parallel DAG. The circles rep-
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Figure 3: Programming and Machine models.
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Figure 4: A four processor PDF schedule on a DAG of depth
d+4 at different points in the execution. The maximum continuous
segment of instructions in the depth-first schedule executed by the
PDF schedule at each point are marked in black. Premature nodes
executed out of the depth-first order are shown in red and are no
more than 3d+ 2 in number.

cache-, and time-efficient scheduling for both (i) multi-

level parallel cache hierarchies and (ii) dynamic memory

allocation. Our scheduler uses a novel combination of ideas

from prior work on space-bounded schedulers and PDF

schedulers. The idea of our new scheduler, which we call the

space-bounded recursive-PDF scheduler, is when anchoring

a task to a level i cache, we identify which of its subtasks

just fit in a level i − 1 cache (as distinguished from those

subtasks that fit in levels ≤ i − 2) and then schedule those
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subtasks in a PDF order. This can be viewed as extending

the controlled-PDF scheduler [12] to more than two levels

(that paper [12], however, did not consider space bounds).

We present bounds on parallel space in terms of the

“effective depth” of a program (see Sec. II-D for definition)

that takes into consideration the non-uniformity of time

required to access data on the critical path. The effective

depth is adapted from a set of program-centric metrics called

the parallel cache-complexity (PCC) framework [18] that

also includes the “effective cache complexity”. We show

that our scheduler leads to good space and cache bounds,

as well as good time bounds, for nested-parallel programs

that obey a regularity criteria quantified in the effective

cache complexity. The regularity criterion basically requires

that when forking a set of parallel subtasks, the subtasks

have approximately the same relationship between work

and space. This allows for subtasks with vastly different

input sizes, as long as the computation performed within

each subtask has a fixed relationship between input size and

space. This criterion is satisfied not only by Quicksort and

Matrix Multiplication algorithms described here, but also

many others including scans, basic graph and combinatorial

algorithms (see Tables 6.1, 6.2 of [18]). A key feature of our

metrics and the regularity criterion is that they are program-

centric (or multicore-oblivious [14]), i.e., defined solely in

terms of the program without reference to scheduler or

hardware parameters.

Contributions.
• A class of space-bounded schedulers with good bounds

on space, cache misses, and time. Our bounds hold for

nested parallel programs and a general allocation scheme

that allows for allocations and frees at arbitrary points in

the program. Allocations and frees may be implicit, e.g.,

in a garbage-collected language where the “free” occurs

implicitly after the last reference.
• The first effective bounds on the extra space required at

each level of the cache to schedule a program on a tree

of caches, in terms of the program’s “parallelizability”

and effective cache complexity. When programs that are

“regular” and highly parallel are mapped on to machines

whose parallelism does not exceed the parallelizability of

the program, the space bound as well as the cache miss

and run time bounds are asymptotically optimal.

One class of programs for which our scheduler guarantees

asymptotically optimal bounds is certain well-structured,

highly parallel, divide-and-conquer routines. Call a divide-

and-conquer routine a type-0 growth-(logb a) routine if it

consists of recursively solving a size-n/b subproblems in

parallel, for integer constants a, b > 1, and additionally

performs O(polylog(n)) sequential work. These routines

have O(nlogb a) work and polylogarithmic depth. Examples

of type-0 growth-1 (linear work) routines include reductions

on arrays and Matrix Addition. More generally, a type-i

growth-logb a may additionally perform a constant number

of size-n calls to lower-type divide-and-conquer subroutines

with growth at most (logb a). The 8-way Matrix Multi-

plication is an example of a type-1 routine, with growth

log4 8 = 1.5, because it relies on the type-0 routine of Ma-

trix Addition. Similarly, if Quicksort were always provided

with the median element as pivot, it would be a growth-

1 type-1 routine. For constant type, a routine with growth

c has polylogarithmic depth and O(ncpolylog(n)) work.

For realistic machine parameters, our scheduler guarantees

asymptotically optimal space bounds for constant-type rou-

tines with growth at least 1.
Note that our results, like much prior work, assume a

dag consistent memory model for the caches [19], in which

concurrent subtasks competing for disjoint pieces of the

same cache line can each operate on their distinct piece

in parallel even if some of the subtasks are writing, and

then the state of the cache line is resolved at the common

synchronization point for the subtasks.1

Road Map. Section II describes the computational model,

the allocation model, the machine model, and the parallel

cache complexity framework used in this paper. Section III

presents our space-bounded recursive-PDF scheduler. Sec-

tion IV presents our main theorem on the performance of

such a scheduler and Section V discusses the results.

II. PROGRAMMING AND MACHINE MODELS

We consider scheduling dynamically allocated nested-

parallel programs on parallel cache hierarchies. Programs

are represented by DAGs that unfold dynamically, i.e., parts

of the graph need not be specified until their predecessors

have been executed. The nodes in the DAG are either (a)

arithmetic or control instructions such as add, jump if equal,

(b) Fork or Join instructions that help express parallelism,

and (c) alloc and free instructions that allocate and free

memory respectively. We consider DAGs that are structurally

deterministic. That is, multiple executions of the DAG, given

the same input (and random seed, if required), must unfold to

the same DAG with the same set of instructions (nodes) and

precedence constraints (edges). The programming model,

allocation model and machine model are discussed in Sec-

tions II-A, II-B, and II-C respectively. The metrics needed

to quantify the cost of the DAGs are in Section II-D. All of

the notation used in this Section is summarized in Table I.

A. Nested-Parallel DAGs: Tasks, Strands, Parallel Blocks
We consider nested-parallel programs allowing arbitrary

dynamic nesting of fork-join constructs but no other syn-

chronizations. Fork-join constructs may be used to imple-

ment parallel loops. This corresponds to the class of algo-

rithms with series-parallel dependence graphs (see Fig. 3a).

1Such so-called false sharing of cache blocks would cause additional
misses in today’s multicores. If the cache line size B is known, then padding
to cache line boundaries solves this problem. See [20] for a machine-
oblivious approach (i.e., B is unknown).
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Following the notation from [15], series-parallel DAGs

can be decomposed into “tasks”, “parallel blocks” and

“strands” recursively as follows. As a base case, a strand
is a serial sequence of instructions not containing any

parallel constructs or subtasks. A task is formed by serially

composing k ≥ 1 strands interleaved with (k − 1) “parallel

blocks” (denoted by t = l1; b1; . . . ; lk). A parallel block is

formed by composing in parallel one or more tasks with a

fork point before all of them and a join point after (denoted

by b = t1‖t2‖ . . . ‖tk). A parallel block can be, for example,

a parallel loop or some constant number of recursive calls.

We do allow a single task in a parallel block, and in the PCC

framework (Section II-D), this is different from continuing

with a strand. If a task occurs in this serial interleaving,

it is implicitly understood to be wrapped inside a parallel

block, allowing the above definition of a task as the serial

interleaving of only strands and parallel blocks. We refer to

the top-level task as the computation.

All strands share a single memory. We say two strands

are concurrent if they are not ordered in the dependence

graph. We assume that the program is free from data races

[21], [22]. Concurrent reads (i.e., concurrent strands reading

the same memory location) are permitted, but not concurrent

writes (i.e., concurrent strands that read or write the same

location with at least one write).

B. Dynamic Allocation and Space Bounds

Programs are allowed to allocate and free variables on

demand. The runtime system handles the mapping from

variables to memory locations during program execution.

Memory locations are provided on demand from a pool of

free locations and recycled back when no longer needed.

We assume the following natural restrictions on the de-

pendencies between nodes that allocate a new variable v
(alloc(v)), deallocate v (free(v)) and reference v:2 (i) free(v)
must succeed the corresponding alloc(v) in the DAG; (ii) v
cannot be referenced by a node that precedes or is concurrent

with alloc(v); and (iii) v cannot be referenced by a node

that succeeds or is concurrent with free(v). Note that these

restrictions do not force a variable to be allocated and freed

at the same level of nesting. This is an important relaxation,

because many programs violate the same-nesting-level re-

quirement, e.g., the space-efficient Quicksort in Section I.

For programs such as the QuickSort in Fig. 1 where the

allocation and the deallocation of variables are implicit, we

can construct the equivalent DAG by placing alloc and free
nodes appropriately. An alloc node is placed at the first

instance where a variable is defined, and free is placed at the

earliest position that follows (in DAG order) the allocation

and all references.

2Our results generalize somewhat beyond these restrictions, e.g., allowing
the last of a set of concurrent references to free a variable, as would be
done in a garbage-collected setting.

n problem size
D span (a.k.a. depth) of computation
p number of processing cores

S1, Sp space of sequential, and parallel executions
M , Mi cache size (at level i)

B memory block size (a.k.a. cache line size)
Ci cost of cache miss at level i
fi num. of level i− 1 caches per level i cache

c, t, b, l computation, task, parallel block, strand

Q1, Q
∗, Q̂α sequential, parallel and effective cache complexity

S1(t;B) space of sequential exec. of t in words
s1(t;B) space of sequential exec. of t in memory blocks
loc(c) Set of memory blocks (locations) touched by c⌈

Q̂α(t;x,B)

sα
1
(t;B)

⌉
Effective depth of t for parameter α

Table I: Summary of Notation

We assume that the machines on which the programs

are mapped have their memory and cache organized into

memory blocks of a fixed size B. The alloc call can allocate

only memory segments that are integral multiples of B. This

is not a severe restriction as the sequential base case of the

recursion that expresses parallelism is normally designed to

use � B words. Similar to prior work [10], we assume that

an allocation or freeing of an array that has a length of k
memory blocks is modeled in the DAG as k allocations of

a single block. An allocation of j > 1 blocks is modeled

as a parallel block of j tasks each of which allocates 1
memory block. This would not change the depth of the DAG

significantly (at most a factor of 3), but it reflects the fact

that allocating j memory blocks might need j units of work.

Space of a task. The number of active locations at an instant

during execution—locations to which some live program

variable is mapped—depends on the execution order of the

instructions in the program. The space of a task in a program

with respect to a schedule at a certain point t is the sum

of the space of all previously allocated memory blocks

referenced by the task until t plus the difference between

allocations and deallocations made in the task until point t.

Space Requirement. The high water mark for the number

of active locations during an execution represents the space
requirement of the schedule for the computation or a

task within the computation. We denote the space required

by a task t (computation c) under the sequential left-to-

right depth-first (1DF) schedule in terms of the number of

memory blocks by s1(t;B) (s1(c;B)). The number of words

is denoted by S1(t;B) := s1(t;B) × B. We denote the set

of memory blocks touched by a task t by loc(t;B). For

example, S1(cn;B) = O(n2) for n×n matrix multiplication

in Fig. 2, and S1(cn;B) = O(n) for Quicksort in Fig. 1.

C. Machine Model: Parallel Memory Hierarchy

Following prior work addressing multi-level parallel cache

hierarchies, we model parallel machines using a tree-of-

caches model. For concreteness, we will use, as in [15], a
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symmetric variant of the PMH model [17]. A PMH consists

of a height-h tree of memory units, called caches (see

Fig. 3c). We assume that each cache is an ideal cache [23],

which has an optimal replacement policy. (See [11], [24],

[25] for implications of realistic replacement policies.) The

leaves of the tree are at level-0 and any internal node has a

level one greater than its children. The leaves (level-0 nodes)

are processors (cores), and the level-h root corresponds to an

infinitely large main memory. We do not assume inclusive

caches, meaning that a memory location may be stored in a

low-level cache without being stored at all ancestor caches.

Each level in the tree is parameterized by three parameters:

Mi, Ci, and fi. We denote the capacity of each level-i cache

by Mi. Memory transfers between a cache and its child

occur at the granularity of memory blocks (cache lines)

of size B. A level-(i + 1) cache miss occurs whenever a

level-i cache miss occurs and the requested memory block

is not resident in the parent level-(i+1) cache; once the data

becomes resident in the level-(i+ 1) cache, a level-i cache

request may be serviced by loading the memory block into

the level-i cache. The cost of a level-i cache miss, denoted

by Ci ≥ 1, is the amount of time to load the corresponding

memory block into the level-i cache under full load. Thus,

Ci models both the latency and the bandwidth constraints.

The number of level-(i− 1) caches below a level-i cache is

denoted fi, and typically Mi > fiMi−1.

D. The Parallel Cache Complexity Framework

This section develops on the parallel cache complexity

(PCC) framework [18], and builds the definitions of the

interrelated effective cache complexity and effective depth
metrics, which are used for the analysis of the scheduler, via

an intermediate parallel cache complexity metric. These

“program-centric” metrics measure the anticipated costs of

the program a PMH. The effective cache complexity quanti-

fies the amount of time a program might spend accessing

data from caches of a certain level in the PMH. It also

captures the cost of load-balancing an irregular program. Just

as the depth metric quantifies the limit of parallelizing the

work in a DAG on the PRAM machine model, the effective

depth quantifies the limit of parallelizability of the effective

cache complexity on the PMH machine model. There are

two keys issues that motivate the definition.

Parallel Cache Complexity. The first issue is that previous

measures of cache complexity such as the one defined in [23]

are for sequential programs. They quantify the number of

cache misses a program would incur on an ideal cache [23]

of a certain size. While this measure can be adapted to

parallel programs as the “sequential cache complexity” Q1

of the the 1DF schedule over the DAG, it may reward

artificial sharing that occurs across parallel tasks. There are

computations for which a sequential execution can reuse data

and have low cache cost, whereas it is impossible to achieve

this degree of reuse when tasks are scheduled in parallel [15,

Th. 1]. To cope with this issue, the parallel cache complexity

metric (i) ignores data reuse among parallel subtasks, and

(ii) assumes an initially empty cache for any task larger than

the cache size. For many algorithms, the existing analyses

already ignore this artificial reuse, and hence the resulting

bounds match the sequential cache complexity [18, Ch. 6].

Definition 1 (Parallel Cache Complexity). For cache param-
eters M and B the parallel cache complexity of a strand l,
parallel block b, or task t starting at state κ is defined as:

strand: Q∗(l;M,B;κ) = Q(l;M,B;κ)

parallel block: For b = t1‖t2‖ . . . ‖tk,
Q∗(b;M,B;κ) =

∑k

i=1
Q∗(ti;M,B;κ)

task: For t = c1; c2; . . . ; ck,
Q∗(t;M,B;κ) =

∑k

i=1
Q∗(ci;M,B;κi−1),

where κi = ∅ if S1(t;B) > M ,
and κi = κ ∪i

j=1 loc(cj ;B) if S1(t;B) ≤M .

Formally, the parallel cache complexity Q∗(c;M,B) is

recursively defined for a computation c based on the compo-

sition rules in Sec. II-A. The present definition differs from

the original definition of Q∗ [15]—which assumed static

allocation—by replacing all space terms by S1. Here, the

parameter κ is used to denote the starting state of a cache for

each subcomputation, or κ = ∅ implicitly if the parameter is

omitted. We denote the work (flops and other instructions)

in c by Q∗(c; 0, 1). Let Q(l;M,B;κ) denote the sequential

cache complexity of a strand l in the ideal cache model [23]

when starting with cache state κ.

Balance Operation. The second issue is that for any cache

in a PMH, the size of the cache and the number of pro-

cessing units clustered below that cache are correlated. It

therefore stands to reason that tasks can only be scheduled

efficiently if they have a good ratio of parallelism to space

requirements. In fact, we previously proved that for certain

sufficiently parallel computations, it is impossible to sched-

ule them without either sacrificing parallelism or consuming

more space or suffering more cache misses [15, Theorem 4].

To cope with this second issue, we extend parallel cache

complexity Q∗ to the effective cache complexity to cap-

ture space-parallelism imbalance of the algorithm through

a balance operation. The effective cache complexity of a

computation c is denoted by Q̂α(c;M,B), where M is the

cache size and B is the block size, and α ≥ 0 is an analytic

parameter that models parallelism. The balance operation

relates the amount of parallelism that can be utilized to the

memory footprint of the computation—the operation models

the effect of running a size-S computation on O((S/B)α)
processors, where α ≥ 0. We adopt the convention that

the space of strands nested directly in task t is equal to

S1(t;B). This is purely for convenience and does not restrict

the program in any way.

128



s1(t)
α

Q̂α(b)
s1(t)α

s1(t2)
α

Q̂α(b) = Q̂α(t1) + Q̂α(t2) + Q̂α(t3)

s1(t1)
α

s1(t3)
α

s1(t)
α

Q̂α(b)
s1(t)α

= Q̂α(t2)
s1(t2)α

Q̂α(t2)
s1(t2)α

s(t2)
α

Parallel block b; area denotes Q̂α(b)

s1(t1)
α

s1(t3)
α

Figure 5: Work-dominated (left) and depth-dominated (right)

parallel blocks. Height represents effective depth and the

area represents effective cache complexity.

Definition 2 (Effective cache complexity). For cache param-
eters M and B, and α > 0, the effective cache complexity
of a strand l, parallel block b, or a task t is defined as.
strand: Q̂α(l;M,B) = Q∗(l;M,B)× sα1 (l;B)

parallel block: For b = t1‖t2‖ . . . ‖tk in task t,

Q̂α(b;M,B)

sα1 (t;B)
= max

⎧⎨⎩maxi

⌈
Q̂α(ti;M,B)

sα
1
(ti;B)

⌉
(depth dominated)∑

i
Q̂α(ci;M,B)

sα
1
(t;B)

(work dominated)

task: For t = c1; c2; . . . ; ck,
Q̂α(t;M,B) =

∑k

i=1
Q̂α(ci;M,B).

The multiplication by sα1 (l;B) for the strand reflects the

fact that while one processor executes the sequential strand,

all the remaining sα1 (l;B)−1 processors wait for it to finish.

The ratio
⌈
Q̂α(ti)/sα1 (ti;B)

⌉
defines the effective depth

for the subtask ti for a parameter α. This effective depth

metric functions as a proxy for the depth of the algorithm.

When the depth-dominated term applies, the effective cache

complexity of the parallel block b nested directly inside

task t is the maximum effective depth of its subtasks

multiplied by the number of processors for the parallel block

b, which is sα1 (t;B) (see Fig. 5). When α increases, the

depth-dominated term captures the effect of using sα1 (ti;B)
processors to execute ti. Setting α = 0 is analogous to

computing the effective cache complexity on 1 processor,

and hence the work term always dominates. We say that an

algorithm is α-efficient if Q̂α(c;M,B) = O(Q̂0(c;M,B)),
where Q̂0 (i.e., Q̂α with α := 0) is Q∗ by definition. This α-

efficiency occurs trivially if the work term always dominates,

but can also happen if sometimes the depth term dominates.

Parallelizability. The least upper bound on the set of α
for which an algorithm is α-efficient (as n → ∞) specifies

the parallelizability of the algorithm. For example, the

Quicksort algorithm in Fig. 1 is α-efficient for all α ∈ [0, 1)
and not for any value of α ≥ 1. The 8-fold recursive matrix

multiplication algorithm has parallelizability of 1.5 and the

limited parallelism version in Fig. 2 has a parallelizability of

only 1. Analogous to the parallelizability of an algorithm, the

parallelism of the machine is defined to be the least value of

β for which fi ≤
(

Mi

Mi−1

)β

for all i > 1, f1 ≤ (M1/3B)
β

.

III. THE SPACE-BOUNDED RECURSIVE-PDF SCHEDULER

Chowdhury et. al. introduced the idea of space-bounded
schedulers for use in trees of caches [13], [14]. The sched-

ulers assume the memory size of a task is known when the

task is scheduled and therefore dynamic memory allocation

significantly complicates the story. The problem is that

memory allocation and cache bounds interact. In particular,

to bound the number of cache misses at a particular cache it

is helpful to bound the memory footprint of the task that is

scheduled on that cache—hence the name “space-bounded”.

However the footprint depends on the amount of data that

are dynamically allocated and simultaneously live during the

task, which in turn depends on how subtasks are scheduled

within the task. To avoid this problem, previous work [14],

[15] has assumed that all memory is preallocated by the

user (static allocation). Such an assumption limits the kind

of programs that can be implemented in the framework, and

even for programs that can be implemented, it is a significant

inconvenience for the programmer.

In [15], we designed a class of “space-bounded” sched-

ulers [14] parameterized by a global dilation parameter
0 < σ ≤ 1, machine parameters {Mi, B, fi} to map nested-

parallel programs to PMH. Given these parameters, we

define a level-i task to be a task that fits within a σ fraction

of the level-i cache, but not within a σ fraction of the level-

(i− 1) cache, i.e., S1(t;B) ≤ σMi and S1(t;B) > σMi−1.

We call t a maximal level-i task if it is a level-i task but its

parent (i.e., minimal containing) task is not. The top level

task (no parent) is considered maximal. We call a strand a

level-i strand if its minimal containing task is a level-i task.

A space-bounded schedule satisfies two properties:

• Anchored [14]: Each task is anchored to a smallest

possible cache that is bigger than the task—strands within

the task can only be scheduled on processors in the tree

rooted at the cache.
• Bounded: A maximal live task “occupies” a cache X if it

is either (i) anchored to X , or (ii) anchored to a cache in a

subcluster below X while its parent is anchored above X .

A live strand occupies cache X if it is live on a processor

beneath cache X and the strand’s task is anchored to an

ancestor cache of X . The sum of sizes of live tasks and

strands that occupy a cache is restricted by the scheduler

to be less than the size of the cache.

These two conditions are sufficient to imply good bounds

on the number of cache misses.

Theorem 3 (Theorem 3 [15]). Let t be a level-i task. The
number of level-j cache misses incurred by executing t with
any space-bounded scheduler is at most Q∗(t;σMj , Bj) for
all cache levels j ≤ i.

129



The scheduler operates by anchoring the root task to the

memory, and exploring the task till it finds a collection of

subtasks and strands that fit in the next highest cache level

(h− 1). It then anchors and executes these subtasks on the

(h−1) level cache in keeping with the space and processing

constraints. The subtasks anchored at level (h − 1) are

recursively explored and so on. Since processors are tied to

caches, a space-bounded scheduler would need to carefully

allocate caches and processors to tasks based on their size.

This is done by keeping track of processor utilization and

through a “desire” function gi(S) that specifies for each level

i task ti the number of (i − 1)-level caches (subclusters)

allocated to ti as a function of its space S1(ti;B). At least

(1/(1− k))
i−1

fraction of processors, where k is constant in

(0, 1), on each of the gi(S) level-(i− 1) caches assigned to

ti are required to be dedicated to ti. (see [15, Sec.7] for more

details including the definition of the utilization function μ.)

The choice of the desire function is critical to obtaining

good running time bounds for the scheduler. Using the desire

function gi(S) = min{fi,max{1, 
fi(3S/Mi)
α′�}} where

α′ ≥ 0 is a parameter smaller than both 1 and α the

parallelizability of the algorithm, we showed the following

bound on runtime.

Theorem 4 (Reworded lemma 11 from [15]). Consider
an h-level PMH with parallelism β and a computation to
schedule with parallelizability α such that α > β. Let α′ be a
non-negative parameter such that β < α′ ≤ min {α, 1}. Let
Ni be a task or strand which has been assigned a set Ut of
q ≤ gi(S(Ni;B)) level-(i− 1) subclusters by the scheduler.
Letting

∑
V ∈Ut

(1−μ(V )) = r (by definition, r ≤ |Ut| = q),

the running time of Ni is at most
∑h−1

j=0
Cj ·Q̂α(Ni;Mj ,B)

rpi−1
·vi,

where vi = 2
∏i−1

j=1

(
1
k +

fj
(1−k)(Mj/Mj−1)α

′

)
is overhead.

Key ideas in this paper. Any space-bounded schedule

that follows the anchoring and processor allocation rules

specified in Section 7 of [15] has good bounds on time,

irrespective of the order in which subtasks of a maximal

level-i task are scheduled at level-(i−1) subclusters. But to

achieve good bounds on space, subtasks must be scheduled

in an order that is close to the depth-first order. Therefore, we

use an adaptation of the Parallel Depth-First (PDF) scheduler

to schedule subtasks with in a task. A p-processor PDF

schedule S based on a depth-first order S1 is defined as

follows. Label each node in the DAG with its order of

execution in S1 and prioritize nodes by this order. Construct

S by allowing any idle processor to pick the ready node (a

ready node has all its predecessors in DAG completed) in

the DAG with the highest priority according to the order of

execution in S1.

We organize each maximal level-i task ti into a collection

of maximal tasks of any level less than i, which we refer

to as super-nodes, and nodes which do not belong to any

maximal subtask, which we refer to as glue-nodes. When

ti is anchored to a level-i cluster, the glue and super nodes

in ti are assigned to the subclusters in the PDF order based

on the left-to-right sequential depth-first order, according to

same allocation policy and desire function as earlier based

on S1(t;B) (instead of S(t;B) as in [15]). A subcluster that

starts a super node completes it before seeking more work

in the PDF order. Each super-node anchored to a subcluster

is in turn recursively scheduled using the PDF order on its

glue and super-nodes. In the next section, we will prove

that the parallel execution that follows this recursive PDF

order subject to space-bounded constraints has low space

requirements for highly parallel programs.

IV. BOUNDS ON SPACE

Our goal is to bound the space used by a space-bounded

recursive-PDF scheduler. The observation is that, relative

to the sequential execution, a parallel execution might have

larger quantities of data that are “live” at the same time,

and hence require more memory. Thus, as in prior work for

other schedulers, we seek to bound the space for parallel

execution relative to the space for sequential execution.

In the space-bounded recursive-PDF schedule on a PMH

based on the depth-first schedule S1, additional space is

required by super-nodes and glue-nodes at each level in the

hierarchy that are premature with respect to S1, i.e., nodes

that are executed before their turn in the sequential S1 has

arrived. Our main result is an upper bound on the size of

premature nodes at each level in the cache hierarchy.

Theorem 5. Let ti be a level-i task. Let α > 0. Let S be a
space-bounded recursive-PDF schedule that, based on the
sequential depth first schedule S1, maps ti to a PMH. The
combined sequential space of all level-(i − 1) supernodes
and glue nodes that are premature in S with respect to S1
at any point does not exceed O(dα × fiMi−1), where

dα :=
i−1∑
j=0

Cj

Ci−1

⌈
Q̂α(t;Mj , B)

s1(t, B)α

⌉
.

The space requirement of the parallel schedule is bounded

by the sum of the space requirement of S1 and the sum

of maximum size of premature nodes at each level in the

hierarchy. One might note that this bound is similar to the

bound on the parallel space of the PDF schedule on a PRAM

schedule; Sp − S1 ≤ (p − 1)d, where p is the number of

processors, d is the depth of the DAG, and (p − 1)d is

the maximum number of premature nodes. The term dα,

which is analogous to d, is the sum of the effective depths

of the algorithm with respect to each level in the hierarchy

weighted by the cost of a cache miss at the corresponding

level. The fan-out fi is analogous with the number of

processors p. The Mi−1 represents the maximum possible

sequential space of level-(< i) supernode.
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Figure 6: Shortened DAG of task t with respect to function f at
threshold y ≤ S1(t;B). The diamonds represent shortened nodes.
Each task on the left is a maximal subtask of t with size < y.

We now build up some definitions and lemmas to prove

this result. The first among these allows us to simplify a

mixture of supernodes and glue nodes into a more uniform

DAG that is simpler to analyze (see Fig. 6).

Definition 6 (α-Shortened DAG). Let f be a function that
assigns to each task and strand a non-negative real number.
Let α ≥ 0. The α-shortened DAG Gf

α,y(t) of task t evaluated
with respect to f at threshold y ≤ S1(t, B) is constructed
based on the decomposition of the DAG G corresponding to
t into super-nodes of size at most y and glue-nodes. Replace
the super-node corresponding to every maximal subtask t′ of
sequential size s1(t′;B) ≤ y by a chain of

⌈
f(t′)/sα1 (t

′;B)
⌉

nodes in Gx
α,y . For every maximal sequential chain of glue-

nodes l, add f(l) nodes in Gf
α,y(t). Precedence constraints

between the nodes in Gf
α,y(t) are identical to those between

the super-nodes and glue-nodes they represent in G (Fig. 6).

Note that α is a free parameter in this definition just as

in the definition of the effective cache complexity. The α-

shortened DAGs for different values of f and y are just

convenient notions for proving our claims and are not used

by or known to the space-bounded recursive-PDF scheduler.

The α-shortened DAG is constructed deliberately so as to

be related to effective depth.

Lemma 7. Let f(t) := Q̂α(t;x,B) be the effective cache
complexity for some cache size x > 0. Fix α > 0 and y ≤
S1(t, B). The depth of the α-shortened DAG Gf

α,y(t) of a

task t is at most
⌈
Q̂α(t;x,B)/sα1 (t;B)

⌉
.

Proof: This follows from the composition rules for

effective cache complexity. We will fix y, and prove the

claim by induction on the composition rules of the task t.
If sα1 (t;B) = y/B, the claim follows immediately. For

a task t = l1; b1; l2; b2; . . . ; lk with sequential space greater

than y, the depth of the α-shortened graph corresponding

to t is the sum of the depths of the α-shortened subgraphs

corresponding to l1, t1; l2; t2; . . . ; tk where ti is the parallel

task in block bi with the largest effective depth.
If we inductively assume that the depth of the α-shortened

DAG of each ti with s1(ti;B) ≥ y/B is ≤
⌈

Q̂α(ti;x,B)

s1(ti,B)α

⌉
,

then the lemma follows by induction because the com-

position rules for effective depth imply

⌈
Q̂α(t;x,B;κ)

sα1 (t;B)

⌉
≥∑k

i=1 Q
∗(li;x,B) +

∑k−1
i=i

⌈
Q̂α(ti;x,B;κ)

sα1 (ti;B)

⌉
.

Since the total work done by a scheduler is a mixture

of cache misses at different levels, we would like to bound

the depth of an α-shortened DAG with respect to a function

that captures work across all levels of hierarchy. For this,

we borrow the definition of latency added effective work
from [15]. We assume that allocations in a maximal level-

(i− 1) task incur the cost of cache miss to be fetched from

level i cache, i.e., they incur Ci−1 cost. Let the latency cost

ρ(x) of an instruction x accessing location m be ρ(x) =
Q∗(x; 0, 1)+

∑j−1
k=1 Ck if the scheduler causes the instruction

x to fetch m from a level j cache on the given PMH. Using

this per-instruction cost, we can define the latency added

cost of a task, and apply the balance operation to define

the effective work Ŵ ∗
α(·), just as the balance operation was

applied to parallel cache complexity to define effective cache

complexity. Let N(t) = Ŵ ∗
α(t)/Ci−1 be the effective work

normalized by Ci−1 for a level-i task t.

Lemma 8. Fix α > 0 and let y ≤ S1(t, B). The depth of

the α-shortened DAG GN
α,y(t) ≤

∑i−1
j=0

Cj

Ci−1

⌈
Q̂α(t;Mj ,B)

sα1 (t;B)

⌉
.

Proof: The separation lemma from [15] allows ef-

fective work of any level-i task t′ to bounded by a

summation of effective cache complexities: Ŵ ∗
α(t

′) ≤∑i−1
j=0 CjQ̂α(t′;Mj , B). Using this inequality, lemma 7

and rearranging the ceiling functions, we have for any

level-i task

⌈
N(t′)

sα1 (t′;B)

⌉
≤

⌈∑i−1
j=0

Cj

Ci−1

Q̂α(t′;Mj ,B)

sα1 (t′;B)

⌉
≤∑i−1

j=0
Cj

Ci−1

⌈
Q̂α(t′;Mj ,B)

sα1 (t′;B)

⌉
. Just as in the case of previous

lemma, this lemma follows by induction along the lines

of the composition rules of the effective cache complexity

applied to x in Q̂α(t;x,B) for each value in {Mj}i−1
j=0.

Theorem 5 follows directly from lemma 9 which bounds

the size of premature nodes in terms of depth of α-shortened

DAG and lemma 8 which bounds the depth of α-shortened

DAG in terms of effective depth.

Lemma 9. Let t be a level-i task. Let α > 0. Let S be a
space-bounded recursive-PDF schedule that, based on the
sequential depth first schedule S1, maps t to a PMH.

Denote the depth of the α-shortened DAG GN
α,Mi−1

(ti)
by dα. The combined sequential space of all level-(i − 1)
supernodes and glue nodes that are premature in S with re-
spect to S1 at any point does not exceed O (dα × fiMi−1) .

Proof: Let Hα := GN
α,Mi−1

(t). Let α′ = min{1, α}.
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We adapt the arguments in the proof of [10, Theoremm

2.3], which bounds the number of premature nodes in a

PDF schedule, to analyze Hα. For this, we use the following

convention: for a maximal task t′ replaced by l > 1 nodes in

Hα, we say that t′ has been completed to depth k < l in Hα

in a space-bounded schedule if at least k×Ci−1×sα
′

1 (t′;B)
effective work has been done on instructions in t′. Task t′ is

completed to depth l if it has been completed.

Partition wall-clock time into continuous phases of τi :=⌈
vi × Ci−1 × (Mi−1/B)α

pi−1

⌉
clock cycles, where vi is the

overhead mentioned in Theorem 4. This provides sufficient

time for the scheduler to complete one more depth level on

any level-j (j < i) subtask tj .

Therefore, if a super-node is completed to depth i at the

beginning of a phase and yet to be completed, it will be

completed to depth i+1 by the end of the phase because of

the allocation policy and theorem 4. Put another way, each

phase provides ample time for a (i− 1)-level subcluster to

completely execute all the instructions in any set of nodes

from Hα corresponding to maximal tasks or glue nodes that

fit in Mi−1 space.

Consider a snapshot of the execution and let C denote the

set of nodes of Hα that have been executed and let C1 denote

the longest sequential prefix of the sequential execution of

t contained in C. A phase is said to complete level l in the

Hα if it is the earliest phase in which all nodes at depth l
in C1 have been completed. We will bound the number of

phases that complete a level l ≤ dα by arguing that if a new
premature node is started in phase i, either phase i or i+ 1
completes a level.

Suppose that a node of Hα premature with respect to

C1 was started in phase i. Let l be the lowest level in

Hα completed in C1 at the start of phase i. Then, at the

beginning of phase i, all nodes in C1 at level l + 1 are

either executed, under execution or ready to be executed

(denote these three sets by Cl+1,i,d, Cl+1,i,e, and Cl+1,i,r

respectively). A premature node with respect to C1 can not

be started unless all of the nodes in Cl+1,i,r have been started

as they are ready for execution and have a higher priority

in the PDF order on Hα. Therefore, if a premature node is

started in phase i, all nodes in Cl+1,i,r have been started by

the end of phase i, which implies they will be completed by

phase i + 1. Nodes in Cl+1,i,e will be completed by phase

i. This proves our claim that if a premature node is started

in phase i, a new level of Hα in phase i or i+ 1.

There are at most dα nodes in which a level of C1 in Hα

is completed. Since a premature node can be executed only

in a phase that completes a level or in the phase before it,

the number of phases that start a new premature node with

respect to C1 is at most 2dα. We will bound the additional

space that premature nodes take up in each such phase.

Note that there will be phases in which premature nodes are

executed but not started. We account for the space added by

each such premature node in the phase that started it.
Suppose a phase contained new premature nodes. A

premature super-node in the decomposition of t that in-

creases the space requirement by M units at some point

during its execution must have at least M cache misses or

allocations. It costs at least M × Ci−1 processor cycles as

every unit of extra space is paid for with Ci−1 processor

cycles. Therefore, the worst case scenario in terms of extra

space added by premature nodes is the following. Every

processor allocates an unit of space in a premature node

every cycle until the last cycle. In the last cycle of the

phase, an additional set of premature nodes of the largest

possible size are started. The contribution of all but the last

cycle of the phase to extra space is at most the number of

cycles per phase multiplied by the number of processors and

block size and divided by Ci−1, i.e., τi−1 × 1
Ci−1

× piB =⌈
vi × fiB (Mi−1/B)

α′
⌉
. In the last cycle of phase, the

costliest way to schedule premature nodes is to schedule a

Mi−1 size super-node at each level-(i− 1) subcluster for a

total of fiMi−1 space. Adding together the extra space con-

tributed by premature nodes across all phases gives an upper

bound of 2dα ×
(⌈

vi × fiB(Mi−1/B)α
′
⌉
+ fiMi−1

)
=

O (dα × fiMi−1) .

V. INTERPRETATION AND CONNECTIONS

To interpret Theorem 5, fix α to be any constant,

preferably the largest for which the computation being

mapped is α-efficient according to definition of effective

cache complexity. Consider a highly parallel and regular

algorithm like the 8-way recursive matrix multiplication

algorithm with Q̂α(tn;M,B) = O(�n/M
1.5 �M/B
) for

all α < 3/2 − 1/2p, p = log�M/B� �n/B
. The work

exponent 1.5 closely matches the parallelizability 1.5−1/2p
[18]. For such algorithms, the effective depth is poly-

logarithmic or sub-polynomial (o(nc) for all c > 0) in input

size. The extra space needed by the premature nodes in

a level-i task ti of size S1(ti, B) = Mi can be obtained

by setting α to 1.5 − 0.5(log�Mi/B� �Mi−1/B
) − ε in

O

(∑i−1
j=1

Cj

Ci−1

⌈
Q̂α(ti;Mj ,B)

Mα
i

⌉
× fiMi−1

)
, which results

in O

((∑i−1
j=1

Cj

Ci−1

⌈
Mi−1

Mj

⌉0.5
×M ε

i−1

)
fiMi−1

)
. Under

the reasonable assumption that
Ci−1

Cj
≥

⌈
Mi−1

Mj

⌉0.5
(cache

access latency grows with physical dimension of cache), the

last expression reduces to O
(
(i− 1)×M ε

i−1 × fiMi−1

)
.

For realistic cache hierarchies, the machine parallelism

β < 1, i.e., fiMi−1 = O(M c
i ) for some c < 1. Therefore,

as ε → 0, the entire term for space of premature nodes

is sublinear in Mi. In addition to algorithms with poly-

logarithmic effective depth, these sort of bounds can also be

shown for algorithms whose DAGs can be constructed as a

sequence of tasks with poly-logarithmic effective depth, e.g.,

the recursive matrix inversion algorithm [18, Sec. 4.3.4].
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Cache Bounds. To obtain good cache bounds, not just good

space bounds, we will assume that the memory allocator

maintains a pool of free memory for each cache to service

the allocation requests by tasks anchored to that cache. If the

task including its premature nodes fits in the cache, there will

always be free memory available in that cache’s pool. This

avoids any additional cache misses when the same space is

reused by distinct program variables.

One way to fit the parallel execution of a task in a cache is

to augment each cache with the space required for premature

nodes as indicated by Theorem 5. We can retain the same

asymptotically optimal bounds on communication cost and

time as in Theorems 3 and 4. When the extra space required

at each level-i cache for a highly parallel and regular algo-

rithm is sub-linear in Mi, the cache augmentation necessary

is very small. Alternatively, since cache space available at

each level is fixed, the space-bounded scheduler would need

to anchor tasks to cache leaving enough margin for the

extra space required to support parallelism. Suppose that

partitioning level-i caches into two components of size M ′
i

and Mi−M ′
i for the in-order and premature nodes suffices.

Then Theorems 3 and 4 would hold with M ′
i substituted

for Mi. For highly parallel and regular algorithms, even

when the scheduler conservatively anchors tasks to caches to

accommodate for the (sublinear) extra space, replacing M ′
i

for Mi does not asymptotically change the communication

cost and runtime bounds.

Total Space. From Theorem 5, it follows that the sum

of sequential space of premature nodes at levels in the

hierarchy is sublinear in S1 for highly parallel and regular

algorithms when machine parallelism β < 1. The following

lemma follows from the earlier observation about sublinear

premature space and the fact that fiMi−1 = o(Mi) for all

levels i < h in the hierarchy.

Lemma 10. Consider a level-h task t with parallelizability α
whose effective depth with respect to α is always subpolyno-
mial in n: o(nc) for all c > 0. Suppose that a space-bounded
recursive-PDF scheduler maps this to a h-level PMH with
parallelism β < min{1, α}. The extra space required at
all levels of caches for allocations by premature nodes in
addition to S1(t;B) is sublinear in terms of S1(t;B).
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