
Write-Avoiding Algorithms

u  Moving data (communication) most expensive
operation (in time or energy), so avoid it
²  Work so far on Communication-Avoiding Algorithms
²  Provably minimize #loads and #stores between levels of

memory hierarchy, and #words sent over network
²  big speedups in theory and practice

Erin Carson, James Demmel, Laura Grigori, Nicholas Knight,
Penporn Koanantakool, Oded Schwartz, Harsha Vardhan Simhadri

Motivation / Model Write-Avoiding Linear Algebra and N-Body Algorithms Parallel W-A Algorithms

Write Lower Bounds Cache-Oblivious à Not W-A

Krylov Subspace Methods
Hardware Perf Counters &
Cache Replacement Policy

 Conclusions / Future Work

u  W-A algorithms don’t always exist
u  CDAG of an algorithm and its input is a directed graph

²  vertices = arguments (inputs, outputs, intermediate data)
²  edges = direct dependencies

u  Theorem 2: If the out-degree of a CDAG of an algorithm
(or large portions of it) is bounded by d, then
²  #writes to slow memory
 ≥ (1/d)*#reads from slow memory
 [see paper for a more precise statement]
²  Corollary : Algorithms with bounded out-degree CDAGs like Cooley-

Tukey FFT (d ≤ 2) and Strassen’s Algorithms (d ≤ 6) cannot be
made write-avoiding by instruction ordering.

u  Definition: A Cache-Oblivious (C-O) algorithm
does not depend on cache-size parameters
²  There are well-known sequential Cache-Oblivious

algorithms for classical matrix multiplication, TRSM,
Cholesky, etc. that are communication avoiding for general
nested memory hierarchies

u  Can CO algorithms be Write-Avoiding?
²  No!

u  Theorem 3: For a large class of problems, Cache-
Oblivious algorithms do at least a constant
fraction as many writes to slow memory as reads
from slow memory
²  “Large class” means “smells like 3-nested loops”

u  Conjecture: extends to nested loops accessing
arrays

u  Empirical measurements of C-O Matrix
Multiplication are in line with Theorem 3

u  Loads and Stores are not equal
 Load = read from slow mem, write to fast mem
 Store = read from fast mem, write to slow mem

u  Writes may be much more expensive than reads:

²  Nonvolatile Memory (NVM)
 Flash, PCM, STT-RAM, ReRAM, …
 STT-RAM read = .14ns / 10-15 Joules vs. write = 10ns / 10-12J
 Faster wear-out with writes than reads
²  When intermediate results written to disk for fault tolerance

(e.g. Spark)
²  Writes may cause more coherency traffic in a shared memory

environment

u  Can we minimize #writes, not just #loads+#stores?

u  Theorem 1:
 #writes to fast memory ≥ ½ (#loads + #stores)

 #writes to slow mem ≥ size of output
Take-away: may be able to do fewer writes to slow memory !
When is this (much smaller) lower bound attainable?

u  Definition: An algorithm that is CA and also attains
an asymptotically smaller lower bound on #writes
to slow memory is called Write Avoiding (W-A).

Cache

DRAM

Cache

DRAM
Load Store

W

W

R

R

Cooley-Tukey FFT CDAG, Out degree ≤ 2
(FFT image credit: wikipedia; author: virens)

`

Dec1C
1,1 1,2 2,1 2,2

7 5 4 1 3 2 6

Enc1
 B Enc1A

Dec1C

Enc1A Enc1B
Strassen’s Algorithm, Out degree ≤ 6

u  There are sequential W-A algorithms
for classical matrix multiplication,
Triangular Solve, Cholesky
factorization and direct N-body algos.

u  Based on appropriate loop reordering
u  All use

²  Explicit blocking based on cache size
²  extend to multiple levels of memory
²  assume explicit control over data movement
²  special cases of CA algorithms

u  Not all communication avoiding
algorithms are W-A

u  Conjecture: should work for many
other familiar algorithms

Classical Matrix Multiplication

Writes to fast memory:
 ml + 2mnl/b
Stores to slow memory:
 mn

Cmxn = Amxl * Blxn

l

m
n b

Triangular Solve

Loads to fast memory:
 mn + n2/2+ mn2/b
Stores to slow memory:
 mn

Direct N-body

Loads to fast memory:
 N2/b
Stores to slow memory:
 N

Particles

ac
cu

m
ul

at
ed

fo

rc
es

Pa
rti

cl
es

N

u  Possible to asymptotically reduce #writes to lowest
level of memory hierarchy for many algorithms
²  Enables saving time and energy for nonvolatile memory
²  Works for many of the 7 dwarfs:
 Dense/Sparse LA, Un/structured grids, N-body, (not FFT)

u  Future Work:
²  Extend WA approach to other algorithms
²  Conjecture: extends to nested loops accessing arrays (HBL)
²  Conjecture: For direct N-body, need to double flops
²  Conjecture: W-A impossible for O(n log n) sorting or DFT
²  Can we minimize #messages too?
²  Extend theory, scheduling algorithms to shared memory
²  Implement on Firebox++
 When does ‘single node + NVM’ beat ‘cluster + DRAM’?

u  W-A algorithms above assume explicit control over data
movement (Ex: User accesses Flash over PCIe)

u  Do cache policies like LRU enable WA algorithms?
u  Experimental Data for 4000 x n x 4000 matrix mult

²  Intel Nehalem-EX Xeon 7560, MESIF coherence, pseudo-LRU L3
²  24MB L3, 256KB L2, 32KB L1 (Output: 122MB = 2.0mln cache lines)
²  hugectl used to allocate huge pages, avoid TLB misses

u  C-box events accessed via customized Intel PCM 2.4
²  L3_VICTIMS.M = #stores from L3 to DRAM (Modified L3 evictions)
²  L3_VICTIMS.E = #L3 evictions without DRAM writes (Exclusive lines)
²  LLC_S_FILLS.E = #loads from DRAM to L3 in Exclusive state

[X-Axis : n (middle dim.) Y-Axis: millions of cache lines (64Bytes each)]

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 1.9$ 2.1$ 1.8$ 2.3$ 4.8$ 9.8$ 19.5$ 39.6$ 78.5$

L3_VICTIMS.E$ 0.4$ 0.8$ 1.6$ 4.2$ 8.8$ 17.9$ 36.6$ 75.4$ 147.5$

LLC_S_FILLS.E$ 2.4$ 2.8$ 3.8$ 6.9$ 14$ 28.1$ 56.5$ 115.5$ 226.6$

MissesonIdeal$Cache$ 2.512$ 3.024$ 4.048$ 6$ 12$ 24$ 48$ 96$ 192$

Write$L.B.$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$

0.1$

1$

10$

100$

1000$

Blocking
Sizes

 L3: CO
 L2: CO
 L1: CO

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 2.1$ 2$ 4.1$ 8.4$ 17$ 34.2$ 68.5$ 137.2$ 274.4$

L3_VICTIMS.E$ 0.8$ 1.3$ 2.7$ 5.3$ 10.7$ 21.6$ 43.5$ 86.5$ 172.9$

LLC_S_FILLS.E$ 2.9$ 3.6$ 7$ 14$ 27.9$ 56$ 112.3$ 224.1$ 447.8$

MissesonIdeal$Cache$ 2.512$ 3.024$ 4.048$ 6$ 12$ 24$ 48$ 96$ 192$

Write$L.B.$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$

0.1$

1$

10$

100$

1000$

Blocking
Sizes

 L3: MKL
 L2: MKL
 L1: MKL

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 2$ 2.1$ 2$ 2.6$ 3.4$ 4.4$ 5.1$ 6.7$ 10.2$

L3_VICTIMS.E$ 0.4$ 0.8$ 1.7$ 4.1$ 8.8$ 17.7$ 35$ 70.1$ 139.8$

LLC_S_FILLS.E$ 2.5$ 2.9$ 4$ 7$ 12.5$ 22.3$ 40.5$ 77.2$ 150.6$

Write$L.B.$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$

0.1$

1$

10$

100$

1000$

Blocking
Sizes

 L3: 1023
 L2: MKL
 L1: MKL

u  Measurements for Cache-Oblivious, MKL and W-A
²  Cache-Oblivious optimizes for reads, but not writes to DRAM
²  MKL optimizes for neither (better time though)
²  W-A at L3-DRAM (with b=1023, 3 blocks fit in L3) + MKL for L1

and L2 does fewer writes, but still not very close to optimal. Gap
between lower bound and writes due to replacement policy.

u  Proposition 6.1: If 5 blocks fit in L3 cache (not just 3
blocks required in explicit blocking), LRU matches
lower bound for any instruction order of block
multiplication within L3 cache.
²  If we do not require W-A at each cache level, there exists an

instruction order for which 3 blocks can fill L3 and be W-A

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 2$ 1.8$ 1.9$ 2.2$ 2.5$ 2.8$ 3$ 3.6$ 4.4$

L3_VICTIMS.E$ 0.4$ 0.7$ 1.5$ 3.8$ 8.4$ 16.9$ 33.9$ 68$ 136.4$

LLC_S_FILLS.E$ 2.4$ 2.8$ 3.8$ 6.3$ 11.2$ 20.1$ 37.3$ 72.1$ 141.4$

Write$L.B.$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$

0.1$

1$

10$

100$

1000$

Blocking
Sizes

 L3: 1023
 L2: 100
 L1: 32

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 1.7$ 2.1$ 1.8$ 2.5$ 4.2$ 7.6$ 14.4$ 27.8$ 53.9$

L3_VICTIMS.E$ 0.6$ 0.7$ 1.5$ 4.2$ 9.2$ 18.8$ 37.5$ 75.7$ 153.1$

LLC_S_FILLS.E$ 2.4$ 2.7$ 3.6$ 7$ 13.8$ 26.8$ 52.3$ 103.9$ 207.6$

Write$L.B.$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$

0.1$

1$

10$

100$

1000$

Blocking
Sizes

 L3: 1023
 L2: 100
 L1: 32

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 2$ 2.1$ 1.9$ 2$ 2.5$ 3$ 3.7$ 4.8$ 8$

L3_VICTIMS.E$ 0.3$ 0.8$ 1.7$ 4$ 11.4$ 25.6$ 51.4$ 102.7$ 207.4$

LLC_S_FILLS.E$ 2.4$ 2.8$ 3.9$ 6.3$ 14.2$ 29$ 55.5$ 107.9$ 216.1$

Write$L.B.$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$

0.1$

1$

10$

100$

1000$

Blocking
Sizes

 L3: 700
 L2: 100
 L1: 32

Multi-level Write-Avoiding
(left column)

W-A at L3-DRAM only, different order at L2.
LRU is W-A with 1023 and 700 block sizes.

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 1.9$ 2$ 1.9$ 1.9$ 2.1$ 2.3$ 2.4$ 2.8$ 3.3$

L3_VICTIMS.E$ 0.4$ 0.8$ 1.8$ 4$ 11.3$ 25.3$ 50.9$ 101.9$ 204.5$

LLC_S_FILLS.E$ 2.4$ 2.9$ 4$ 6.3$ 13.8$ 28$ 53.7$ 105.2$ 208.4$

Write$L.B.$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$ 2$

0.1$

1$

10$

100$

1000$

Blocking
Sizes

 L3: 700
 L2: 100
 L1: 32

Communication-Avoiding CG:

while (not converged)
 Compute and store

 Compute and store
 for i=1:s
 (update coefficient vectors p’, r’, x’)
 end for
 Recover [p, r]=V[p’, r’]
end while

Write-Avoiding CG:

while (not converged)
 Interleave computation of and construction of
 for i=1:s
 (update coefficient vectors p’, r’, x’)
 end for
 Recompute V (w/out writing), use to compute [p, r]=V[p’, r’]
end while

Reads per s steps: O(nnz + n)
Writes per s steps: O(ns)

Reads per s steps: O(nnz + n)
Writes per s steps: O(n)

(1 extra
 matrix powers kernel)

L1

L2

L1

L2
NW

L1

L2

L3

L1

L2

L3

NW

u  Model 1:
²  L1 = cache
²  L2 = DRAM
²  Network (NW) connects L2s
u  Can we minimize NW communication and L2

writes from L1?
u  Natural idea:

²  Use CA algorithm to minimize NW communication
²  Use WA algorithm locally on each processor
²  Applies to Matmul, TRSM, Cholesky, N-Body, …

u  Does it work for Matmul?
²  Goals: n2/P1/2 words moved on NW, n2/P writes to L2ßL1
²  Yes for NW, but n2/P1/2 writes to L2 from L1
²  Probably OK, since dominated by NW costs
²  Can attain both lower bounds, but with P1/2 times as much

L2, probably not worth it

u  Model 2.1:
²  L3 = NVM
²  Data fits in L2
u  Is it worth using L3?

u  Idea: use 2.5D algorithms that replicate data to
reduce NW traffic
²  Ex: 2.5DMM moves n2/(cP)1/2 words over NW if enough

memory for c copies of data (1 ≤ c ≤ P1/3)
²  Using L3 may let us increase c, at cost of L3 writes

u  Performance model
²  c2 = #copies using L2, c3 = #copies using L3, so c3 > c2
²  βNW = network BW, β23 = L3 write BW, β32 = L3 read BW
²  Potential speedup = (c3/c2)1/2 [βNW /(βNW + 1.5β23 + β32)]

u  Model 2.2
²  Same architecture as Model 2.1
²  Data fits in L3, not L2
u  Can we minimize NW communication and L3

writes from L2?
u  Can we attain all lower bounds?

²  WNW = Ω (n2/(cP)1/2) words communicated over network
²  W23 = Ω (n2/P) words written to L3 from L2

u  Theorem 4 (bad news): It is impossible to attain
both lower bounds (See paper for details)

u  Good news: There are algorithms that can attain
either bound (but not the other)
²  Alg 1: WNW = O (n2/(cP)1/2) but W23 = WNW
²  Alg 2: W23 = O (n2/P) but WNW = O (n3/(P(size_of_L2)1/2)
²  Which one is best depends on algorithmic & HW

parameters
²  Extends to LU

L1

L2

L3

L1

L2

L3

NW

[See Erin Carson’s poster for details]

X

T

B

n
n

m

 (?)
Tnxn * Xnxm = Bnxm

