
Write-Avoiding Algorithms 

u  Moving data (communication) most expensive 
operation (in time or energy), so avoid it 
²  Work so far on Communication-Avoiding Algorithms 
²  Provably minimize #loads and #stores between levels of 

memory hierarchy, and #words sent over network 
²  big speedups in theory and practice 
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u  W-A algorithms don’t always exist 
u  CDAG of an algorithm and its input is a directed graph 

²  vertices = arguments (inputs, outputs, intermediate data) 
²  edges = direct dependencies 

u  Theorem 2: If the out-degree of a CDAG of an algorithm 
(or large portions of it) is bounded by d, then 
²  #writes to slow memory 
    ≥ (1/d)*#reads from slow memory 
    [ see paper for a more precise statement ] 
²  Corollary : Algorithms with bounded out-degree CDAGs like Cooley-

Tukey FFT (d ≤ 2) and Strassen’s Algorithms (d ≤ 6) cannot be 
made write-avoiding by instruction ordering. 

 

u  Definition: A Cache-Oblivious (C-O) algorithm 
does not depend on cache-size parameters
²  There are well-known sequential Cache-Oblivious 

algorithms for classical matrix multiplication, TRSM, 
Cholesky, etc. that are communication avoiding for general 
nested memory hierarchies   

u  Can CO algorithms be Write-Avoiding? 
²   No! 

u  Theorem 3: For a large class of problems, Cache-
Oblivious algorithms do at least a constant 
fraction as many writes to slow memory as reads 
from slow memory
²  “Large class” means “smells like 3-nested loops”  

u  Conjecture: extends to nested loops accessing 
arrays 

u  Empirical measurements of C-O Matrix 
Multiplication are in line with Theorem 3 

u  Loads and Stores are not equal 
        Load = read from slow mem, write to fast mem 
        Store = read from fast mem, write to slow mem 
 
 
 
 
 
u  Writes may be much more expensive than reads: 

²  Nonvolatile Memory (NVM) 
      Flash, PCM, STT-RAM, ReRAM, … 
      STT-RAM read = .14ns / 10-15 Joules vs. write = 10ns / 10-12J 
      Faster wear-out with writes than reads 
²  When intermediate results written to disk for fault tolerance 

(e.g. Spark) 
²  Writes may cause more coherency traffic in a shared memory 

environment 

u  Can we minimize #writes, not just #loads+#stores? 

u  Theorem 1:   
          #writes to fast memory  ≥ ½ (#loads + #stores) 

        #writes to slow mem ≥ size of output 
Take-away: may be able to do fewer writes to slow memory ! 
When is this (much smaller) lower bound attainable? 

u  Definition: An algorithm that is CA and also attains 
an asymptotically smaller lower bound on #writes 
to slow memory is called Write Avoiding (W-A). 
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u  There are sequential W-A algorithms 
for classical matrix multiplication, 
Triangular Solve, Cholesky 
factorization and direct N-body algos. 

u  Based on appropriate loop reordering 
u  All use 

²  Explicit blocking based on cache size 
²  extend to multiple levels of memory 
²  assume explicit control over data movement 
²   special cases of CA algorithms 

u  Not all communication avoiding 
algorithms are W-A 

u  Conjecture: should work for many 
other familiar algorithms  

Classical Matrix Multiplication 
  
Writes to fast memory: 
 ml + 2mnl/b  
Stores to slow memory: 
  mn 

Cmxn = Amxl * Blxn 
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Triangular Solve 
 
Loads to fast memory: 
 mn + n2/2+ mn2/b  
Stores to slow memory: 
  mn 

Direct N-body 
 
Loads to fast memory: 
 N2/b  
Stores to slow memory: 
  N 
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u  Possible to asymptotically reduce #writes to lowest 
level of memory hierarchy for many algorithms 
²  Enables saving time and energy for nonvolatile memory  
²  Works for many of the 7 dwarfs: 
      Dense/Sparse LA, Un/structured grids, N-body, (not FFT) 

u  Future Work: 
²  Extend WA approach to other algorithms 
²  Conjecture: extends to nested loops accessing arrays (HBL) 
²  Conjecture: For direct N-body, need to double flops 
²  Conjecture: W-A impossible for O(n log n) sorting or DFT 
²  Can we minimize #messages too?  
²  Extend theory, scheduling algorithms to shared memory 
²  Implement on Firebox++ 
      When does ‘single node + NVM’ beat ‘cluster + DRAM’? 

u  W-A algorithms above assume explicit control over data 
movement (Ex: User accesses Flash over PCIe) 

u  Do cache policies like LRU enable WA algorithms? 
u  Experimental Data for 4000 x n x 4000 matrix mult

²  Intel Nehalem-EX Xeon 7560, MESIF coherence, pseudo-LRU L3 
²  24MB L3, 256KB L2, 32KB L1  (Output: 122MB = 2.0mln cache lines) 
²  hugectl used to allocate huge pages, avoid TLB misses 

u  C-box events accessed via customized Intel PCM 2.4 
²  L3_VICTIMS.M = #stores from L3 to DRAM (Modified L3 evictions) 
²  L3_VICTIMS.E = #L3 evictions without DRAM writes (Exclusive lines) 
²  LLC_S_FILLS.E = #loads from DRAM to L3 in Exclusive state 

[  X-Axis : n (middle dim.)     Y-Axis: millions of cache lines (64Bytes each)  ] 

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 1.9$ 2.1$ 1.8$ 2.3$ 4.8$ 9.8$ 19.5$ 39.6$ 78.5$

L3_VICTIMS.E$ 0.4$ 0.8$ 1.6$ 4.2$ 8.8$ 17.9$ 36.6$ 75.4$ 147.5$

LLC_S_FILLS.E$ 2.4$ 2.8$ 3.8$ 6.9$ 14$ 28.1$ 56.5$ 115.5$ 226.6$

Misses$on$Ideal$Cache$ 2.512$ 3.024$ 4.048$ 6$ 12$ 24$ 48$ 96$ 192$
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128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 2.1$ 2$ 4.1$ 8.4$ 17$ 34.2$ 68.5$ 137.2$ 274.4$

L3_VICTIMS.E$ 0.8$ 1.3$ 2.7$ 5.3$ 10.7$ 21.6$ 43.5$ 86.5$ 172.9$

LLC_S_FILLS.E$ 2.9$ 3.6$ 7$ 14$ 27.9$ 56$ 112.3$ 224.1$ 447.8$

Misses$on$Ideal$Cache$ 2.512$ 3.024$ 4.048$ 6$ 12$ 24$ 48$ 96$ 192$
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128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 2$ 2.1$ 2$ 2.6$ 3.4$ 4.4$ 5.1$ 6.7$ 10.2$

L3_VICTIMS.E$ 0.4$ 0.8$ 1.7$ 4.1$ 8.8$ 17.7$ 35$ 70.1$ 139.8$

LLC_S_FILLS.E$ 2.5$ 2.9$ 4$ 7$ 12.5$ 22.3$ 40.5$ 77.2$ 150.6$
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u  Measurements for Cache-Oblivious, MKL and W-A
²  Cache-Oblivious optimizes for reads, but not writes to DRAM 
²  MKL optimizes for neither (better time though) 
²  W-A at L3-DRAM (with b=1023, 3 blocks fit in L3) + MKL for L1 

and L2 does fewer writes, but still not very close to optimal. Gap 
between lower bound and writes due to replacement policy. 

u  Proposition 6.1: If 5 blocks fit in L3 cache (not just 3 
blocks required in explicit blocking), LRU matches 
lower bound for any instruction order of block 
multiplication within L3 cache.
²  If we do not require W-A at each cache level, there exists an 

instruction order for which 3 blocks can fill L3 and be W-A 

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 2$ 1.8$ 1.9$ 2.2$ 2.5$ 2.8$ 3$ 3.6$ 4.4$

L3_VICTIMS.E$ 0.4$ 0.7$ 1.5$ 3.8$ 8.4$ 16.9$ 33.9$ 68$ 136.4$

LLC_S_FILLS.E$ 2.4$ 2.8$ 3.8$ 6.3$ 11.2$ 20.1$ 37.3$ 72.1$ 141.4$
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128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 1.7$ 2.1$ 1.8$ 2.5$ 4.2$ 7.6$ 14.4$ 27.8$ 53.9$

L3_VICTIMS.E$ 0.6$ 0.7$ 1.5$ 4.2$ 9.2$ 18.8$ 37.5$ 75.7$ 153.1$

LLC_S_FILLS.E$ 2.4$ 2.7$ 3.6$ 7$ 13.8$ 26.8$ 52.3$ 103.9$ 207.6$
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128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 2$ 2.1$ 1.9$ 2$ 2.5$ 3$ 3.7$ 4.8$ 8$

L3_VICTIMS.E$ 0.3$ 0.8$ 1.7$ 4$ 11.4$ 25.6$ 51.4$ 102.7$ 207.4$

LLC_S_FILLS.E$ 2.4$ 2.8$ 3.9$ 6.3$ 14.2$ 29$ 55.5$ 107.9$ 216.1$
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Multi-level Write-Avoiding 
(left column) 

W-A at L3-DRAM only, different order at L2. 
LRU is W-A with 1023 and 700 block sizes. 

128$ 256$ 512$ 1K$ 2K$ 4K$ 8K$ 16K$ 32K$
L3_VICTIMS.M$ 1.9$ 2$ 1.9$ 1.9$ 2.1$ 2.3$ 2.4$ 2.8$ 3.3$

L3_VICTIMS.E$ 0.4$ 0.8$ 1.8$ 4$ 11.3$ 25.3$ 50.9$ 101.9$ 204.5$

LLC_S_FILLS.E$ 2.4$ 2.9$ 4$ 6.3$ 13.8$ 28$ 53.7$ 105.2$ 208.4$
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Communication-Avoiding CG: 
 
while (not converged) 
     Compute and store 
       
     Compute and store  
      for i=1:s 
            (update coefficient vectors p’, r’, x’) 
      end for 
      Recover [p, r]=V[p’, r’] 
end while 

Write-Avoiding CG: 
 
while (not converged) 
      Interleave computation of  and construction of  
      for i=1:s 
            (update coefficient vectors p’, r’, x’) 
      end for 
      Recompute V (w/out writing), use to compute [p, r]=V[p’, r’] 
end while 
      

Reads per s steps: O(nnz + n) 
Writes per s steps: O(ns) 

Reads per s steps: O(nnz + n) 
Writes per s steps: O(n) 

(1 extra 
 matrix powers kernel) 
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u  Model 1:  
²  L1 = cache 
²  L2 = DRAM 
²  Network (NW) connects L2s 
u  Can we minimize NW communication and L2 

writes from L1? 
u  Natural idea: 

²  Use CA algorithm to minimize NW communication 
²  Use WA algorithm locally on each processor 
²  Applies to Matmul, TRSM, Cholesky, N-Body, … 

u  Does it work for Matmul? 
²  Goals: n2/P1/2 words moved on NW, n2/P writes to L2ßL1 
²  Yes for NW, but n2/P1/2 writes to L2 from L1 
²  Probably OK, since dominated by NW costs 
²  Can attain both lower bounds, but with P1/2  times as much 

L2, probably not worth it 

u  Model 2.1:  
²  L3 = NVM 
²  Data fits in L2 
u  Is it worth using L3? 

u  Idea: use 2.5D algorithms that replicate data to 
reduce NW traffic 
²  Ex: 2.5DMM moves n2/(cP)1/2 words over NW if enough 

memory for c copies of data   (1 ≤ c ≤ P1/3) 
²  Using L3 may let us increase c, at cost of L3 writes 

u  Performance model 
²  c2 = #copies using L2, c3 = #copies using L3,  so c3 > c2 
²  βNW = network BW,  β23 = L3 write BW,  β32 = L3 read BW 
²  Potential speedup = (c3/c2)1/2 [βNW /(βNW + 1.5β23 + β32) ]  

u  Model 2.2 
²  Same architecture as Model 2.1 
²  Data fits in L3, not L2 
u  Can we minimize NW communication and L3 

writes from L2? 
u  Can we attain all lower bounds?

²  WNW = Ω (n2/(cP)1/2) words communicated over network  
²  W23 = Ω (n2/P) words written to L3 from L2 

u  Theorem 4 (bad news): It is impossible to attain 
both lower bounds (See paper for details)  

u  Good news: There are algorithms that can attain 
either bound (but not the other) 
²  Alg 1:  WNW = O (n2/(cP)1/2 ) but W23 = WNW  
²  Alg 2:  W23 = O (n2/P)  but  WNW = O (n3/(P(size_of_L2)1/2 )  
²  Which one is best depends on algorithmic & HW 

parameters 
²  Extends to LU 
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[ See Erin Carson’s poster for details ] 
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Tnxn * Xnxm = Bnxm 


