A

frre0r1e0r "l‘

BERKELEY LAB

INVENTEURS DU MONDE NUMERIQUE

Motivation / Model

¢ Moving data (communication) most expensive
operation (in time or energy), so avoid it
< Work so far on Communication-Avoiding Algorithms

< Provably minimize #loads and #stores between levels of
memory hierarchy, and #words sent over network

< big speedups in theory and practice

\ g/

Cache

\

¢ Loads and Stores are not equal
Load = read from slow mem, write to fast mem
Store = read from fast mem, write to slow mem

Load Store

¢ Writes may be much more expensive than reads:

< Nonvolatile Memory (NVM)
Flash, PCM, STT-RAM, ReRAM, ...
STT-RAM read = .14ns / 1015 Joules vs. write = 10ns / 1012J
Faster wear-out with writes than reads

< When intermediate results written to disk for fault tolerance
(e.g. Spark)

< Writes may cause more coherency traffic in a shared memory
environment

¢ Can we minimize #writes, not just #loads+#stores?

¢ Theorem 1.
#writes to fast memory =14 (#loads + #stores)
#writes to slow mem = size of output
Take-away: may be able to do fewer writes to slow memory !
When is this (much smaller) lower bound attainable?

¢ Definition: An algorithm that is CA and also attains
an asymptotically smaller lower bound on #writes
to slow memory is called Write Avoiding (W-A).

Write Lower Bounds

¢ W-A algorithms don’t always exist
¢ CDAG of an algorithm and its input is a directed graph

< vertices = arguments (inputs, outputs, intermediate data)
< edges = direct dependencies

¢
(or large portions of it) is bounded by d, then
< #writes to slow memory

> (1/d)*#reads from slow memory
[see paper for a more precise statement |

< Corollary : Algorithms with bounded out-degree CDAGs like Cooley-

Tukey FFT (d £ 2) and Strassen’s Algorithms (d < 6) cannot be
made write-avoiding by instruction ordering.

Dec,C

x[0]o——

xX[2]o—»—

N/2- point
DFT

x[4]o——

x[6]o——

X[1]0_>_

xX[3]o—»—

N/2- point
DFT

xX[5]o——

X[7]o——

Enc,A Enc,B

Cooley-Tukey FFT CDAG, Out degree < 2 Strassen’s Algorithm, Out degree < 6

(FFT image credit: wikipedia; author: virens)

Theorem 2: If the out-degree of a CDAG of an algorithm

Write-Avoiding Algorithms

Erin Carson, James Demmel, Laura Grigori, Nicholas Knight,

Penporn Koanantakool, Oded Schwartz, Harsha Vardhan Simhadri

Write-Avoiding Linear Algebra and N-Body Algorithms

m n T
n A Aﬁ;b m AL 7t ¢ There are sequential W-A algorithms
A A A A ' //\ /e N Particles . : -~ -
S 5 SN AL 1 4 A, < > for classical matrix multiplication,
| 4 SR IR N N Triangular Solve, Cholesky
5 it it Mokt o1l .
- 1B R R factorization and direct N-body algos.
A amme 2l R e It it e I A% : _
| S T 28 ¢ Based on appropriate loop reordering
i X A ST S e Alluse
. R SREE SREE SRR 2N % Explicit blocking based on cache size
v (?) < extend to multiple levels of memory
Cmxn = Amxl % BIxn Tnxn * XnNxm = Bnxm < assume explicit control over data movement
Classical Matrix Multiplication Triangular Solve Direct N-body «~ special cases of CA algorithms
¢ Not all communication avoiding
Writes to tast memory: Loads to fast memory: Loads to fast memory: . E(a)logr?'relg’lmrzasfﬁowl_dA ork for man
+ 2 2 2 Jecture. should w y
ml + 2mnl/b mn +n7/2+ mn</b N°/b other familiar algorithms
Stores to slow memory: Stores to slow memory: Stores to slow memory:
mn mn N

Hardware Perf Counters &
Krylov Subspace Methods Cache Replacement Policy

¢ W-A algorithms above assume explicit control over data
Communication-Avoiding CG: movement (Ex: User accesses Flash over PCle)
T \ ¢ Do cache policies like LRU enable WA algorithms?
while (not converged)
Compute and store [
¢ C-box events accessed via customized Intel PCM 2.4
< L3_VICTIMS.M = #stores from L3 to DRAM (Modified L3 evictions)
——————————————————————————— ’ |3 VICTIMS.E = #L3 evictions without DRAM writes (Exclusive lines)

¢ Experimental Data for 4000 x n x 4000 matrix mult
<+ Intel Nehalem-EX Xeon 7560, MESIF coherence, pseudo-LRU L3
<>
Reads per s steps: O(nnz + n) 4 LLC_S_FILLS.E = #loads from DRAM to L3 in Exclusive state
Writes per s steps: O(ns)

Compute and store
for i=1:s
(update coefficient vectors p’, r’, X)
end for
Recover [p, r]=V[p/, ']
end while

& 24MB L3, 256KB L2, 32KB L1 (Output: 122MB = 2.0mIn cache lines)
< hugectl used to allocate huge pages, avoid TLB misses

om m Em Em Em o o EE EE EE EE o EE o = =,
- . O T T O S e S e e S

Write-Avoiding CG:

——————————————————————————————————

Blocking
. 100
Sizes

|
1while (not converged)

Reads per s steps. O(nnz + n): Interleave computation of and construction of
: I fori=1:s
Writes per s steps: O(n)

: (update coefficient vectors p’, r’, X’)

l end for

(j_ extra : Recompute V (w/out writing), use to compute [p, r[=V[p’, r'l1
lend while :

matrix powers kernel)', /

| See Erin Carson’s poster for details]

Cache-Oblivious = Not W-A

¢ Definition: A Cache-Oblivious (C-O) algorithm
does not depend on cache-size parameters

< There are well-known sequential Cache-Oblivious
algorithms for classical matrix multiplication, TRSM,
Cholesky, etc. that are communication avoiding for general
nested memory hierarchies

Can CO algorithms be Write-Avoiding?
< No!

Theorem 3: For a large class of problems, Cache-
Oblivious algorithms do at least a constant
fraction as many writes to slow memory as reads
from slow memory

< “Large class” means “smells like 3-nested loops”

L3: 1023|110
L2: MKL
L1: MKL

—-—— e o - o = = -

||||||||||||

||||||||||||

IR
IEKE

222222222222222222

[X-Axis : n (middle dim.) Y-Axis: millions of cache lines (64Bytes each) |

¢ Measurements for Cache-Oblivious, MKL and W-A
< Cache-Oblivious optimizes for reads, but not writes to DRAM
< MHKL optimizes for neither (better time though)

< W-A at L3-DRAM (with b=1023, 3 blocks fit in L3) + MKL for L1
and L2 does fewer writes, but still not very close to optimal. Gap
between lower bound and writes due to replacement policy.

¢ Proposition 6.1: If 5 blocks fit in L3 cache (not just 3
blocks required in explicit blocking), LRU matches
lower bound for any instruction order of block

multiplication within L3 cache.

< If we do not require W-A at each cache level, there exists an
instruction order for which 3 blocks can fill L3 and be W-A—l

222222222

Blocking Blocking
Sizes (% > 0 Sizes 00

L3:
L2:
Ll:

1023110
100
32 = -

1

L3:
L2:
Ll:

102310
100
T A
32 - -
1

148

222222222

Blocking

Conjecture: extends to nested loops accessing
arrays

Empirical measurements of C-O Matrix
Multiplication are in line with Theorem 3

n
-

L3: 700(10
L2: 100
Ll: 32

1}

LRU is W-A with 1023 and 700 block sizes.

(left column)

Parallel W-A Algorithms

¢ Model 1:
< L1 = cache L1 L1
+ L2 = DRAM 2 e 12

< Network (NW) connects L2s

¢ Can we minimize NW communication and L2
writes from L17?

Natural idea:
< Use CA algorithm to minimize NW communication

< Use WA algorithm locally on each processor
< Applies to Matmul, TRSM, Cholesky, N-Body, ...

Does it work for Matmul?

< Goals: n2/P12 words moved on NW, n2/P writes to L2<L1
% Yes for NW, but n2/P¥2 writes to L2 from L1

< Probably OK, since dominated by NW costs

< Can attain both lower bounds, but with P/2 times as much
L2, probably not worth it

Model 2.1:
< L3 = NVM
< Data fits in L2

¢ Is it worth using L3?

ldea: use 2.5D algorithms that replicate data to
reduce NW traffic

< Ex: 2.5DMM moves n2/(cP)¥/2 words over NW if enough
memory for ¢ copies of data (1 <c¢ < PY3)

< Using L3 may let us increase c, at cost of L3 writes
Performance model

< C, = #copies using L2, c4 = #copies using L3, so c5 > C,
< Byw = hetwork BW, (,5; = L3 write BW, B3, = L3 read BW
< Potential speedup = (C3/C,)Y2 [Byw /Baw T 15853+ Bso) |

L1 L1
NW

L2 L2

L3

L3

L1
L2

L1
L2

NW

L3 L3

Model 2.2

<~ Same architecture as Model 2.1
< Data fits in L3, not L2

¢ Can we minimize NW communication and L3
writes from L27?

Can we attain all lower bounds?

< Wyw = Q (n2/(cP)1/2) words communicated over network
< Wohgy =Q (n2/P) words written to L3 from L2

Theorem 4 (bad news): It is impossible to attain
both lower bounds (See paper for details)

Good news: There are algorithms that can attain
either bound (but not the other)

4 Alg 1: Wy = 0 (n2/(cP)Y/2) but Wos = Wy

+ Alg 2: W,y =0 (n2/P) but Wy, = O (n3/(P(size_of_L2)1/2)

< Which one is best depends on algorithmic & HW
parameters

% Extends to LU

Conclusions / Future Work

¢ Possible to asymptotically reduce #writes to lowest
level of memory hierarchy for many algorithms

< Enables saving time and energy for nonvolatile memory

< Works for many of the 7 dwarfs:
Dense/Sparse LA, Un/structured grids, N-body, (not FFT)

¢ Future Work:

< Extend WA approach to other algorithms
Conjecture: extends to nested loops accessing arrays (HBL)
Conjecture: For direct N-body, need to double flops
Conjecture: W-A impossible for O(n log n) sorting or DF
Can we minimize #messages too?
Extend theory, scheduling algorithms to shared memory

Implement on Firebox++
When does ‘single node + NVM’ beat ‘cluster + DRAM’?

R I

