
Low Depth Cache-Oblivious Algorithms

Guy E. Blelloch
Carnegie Mellon University

Pittsburgh, PA USA
guyb@cs.cmu.edu

Phillip B. Gibbons
Intel Labs Pittsburgh
Pittsburgh, PA USA

phillip.b.gibbons@intel.com

Harsha Vardhan Simhadri
Carnegie Mellon University

Pittsburgh, PA USA
harshas@cs.cmu.edu

ABSTRACT
In this paper we explore a simple and general approach for devel-
oping parallel algorithms that lead to good cache complexity on
parallel machines with private or shared caches. The approach is to
design nested-parallel algorithms that have low depth (span, critical
path length) and for which the natural sequential evaluation order
has low cache complexity in the cache-oblivious model. We de-
scribe several cache-oblivious algorithms with optimal work, poly-
logarithmic depth, and sequential cache complexities that match
the best sequential algorithms, including the first such algorithms
for sorting and for sparse-matrix vector multiply on matrices with
good vertex separators.

Using known mappings, our results lead to low cache complex-
ities on shared-memory multiprocessors with a single level of pri-
vate caches or a single shared cache. We generalize these mappings
to multi-level cache hierarchies of private or shared caches, imply-
ing that our algorithms also have low cache complexities on such
hierarchies. The key factor in obtaining these low parallel cache
complexities is the low depth of the algorithms we propose.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; D.2.8 [Software Engineer-
ing]: Metrics—complexity measures, performance measures

General Terms
Algorithms, Theory

Keywords
Cache-oblivious algorithms, sorting, sparse-matrix vector multiply,
graph algorithms, parallel algorithms, multiprocessors, schedulers.

1. INTRODUCTION
Due to the physical realities of building machines it seems likely

that locality will always play a role in designing efficient algo-
rithms for parallel machines. Indeed many parallel models have
been designed to take account of locality on both shared [4, 48,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.

7] and distributed memory machines [48, 33, 12]. These mod-
els, however, assume a fixed number of processors for which the
algorithm designer or programmer have to map their algorithms
onto. What seems to be emerging instead as the dominant pro-
gramming paradigm for shared memory parallel machines is one
based on dynamic parallelism. In such models the programmer
expresses the full parallelism without concern of how it maps onto
processors. The runtime system then supplies a scheduler that maps
this dynamic parallelism onto the processors of the machine. A
common form of programming in this model is based on nested
parallelism—consisting of nested parallel loops and/or fork-join
constructs [13, 26, 20, 35, 44]. If locality is not of concern, per-
formance costs in such models can be calculated in terms of work
(number of operations) and depth (also known as the span or the
critical path length) and can be mapped onto runtime on a fixed
number of processors. This can greatly simplify how programmers
think about parallelism. It is not clear, however, how to capture
locality in these models in a high-level way.

In this paper we are interested in analyzing the locality of al-
gorithms written with dynamic nested parallelism. We consider a
paradigm based on analyzing the cost of an algorithm using in ad-
dition to work and depth the cache complexity in the sequential
cache-oblivious model. The cache-oblivious model (ideal-cache
model) [38] is a two-level model of computation comprised of an
unbounded memory and a cache of size M . Data are transferred
between the two levels using cache lines of size B; all computation
occurs on data in the cache. Both M and B are unknown to the
algorithm, and the goal is to minimize an algorithm’s cache com-
plexity (number of cache lines transferred). Sequential algorithms
designed for this model have the advantage of achieving good se-
quential cache complexity across all levels of a (single processor)
multi-level cache hierarchy, regardless of the values of Mi and Bi

at each level i [38]. Researchers have developed cache-oblivious
algorithms for a many problems [6, 22, 34].

The cache complexity Q(n; M, B) for a natural sequential ex-
ecution of a parallel program (on input of size n) can be used
to bound the cache complexity Qp(n; M, B) for the same pro-
gram on certain p-processor parallel machines with a single level
of cache(s) [1, 15]. In particular, for a shared-memory parallel
machine with private caches (each processor has its own cache)
using a work-stealing scheduler, Qp(n; M, B) < Q(n; M, B) +
O(pMD/B) with probability 1−δ [1],1 and for a shared cache us-
ing a parallel-depth-first (PDF) scheduler, Qp(n; M +pBD, B) ≤
Q(n; M, B) [15], where D is the depth of the computation. These
results apply to nested-parallel computations—computations start-
ing with a single thread and using nested fork-join parallelism—
that use binary forking (spawning) of threads. (When viewed as a
computation dag where the nodes are constant-work tasks and the
edges are dependences between tasks, the dags for such compu-

1In this paper, δ is an arbitrarily small positive constant.

189

Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

tations are series-parallel.) The “natural” sequential execution is
simply one that runs each call in a fork to completion before start-
ing the next.

These results for a single level of cache(s) suggest a simple ap-
proach for developing cache-efficient parallel algorithms: Develop
a nested-parallel algorithm with (1) low cache-oblivious complex-
ity for the sequential ordering, and (2) low depth; then use the re-
sults to bound the cache complexity on a parallel machine. Low
depth is important because D shows up in the term for additional
misses for private caches, and additional cache size for a shared
cache. Moreover, we show that algorithms designed with this ap-
proach can also achieve good parallel cache complexity on multi-
level private or shared caches. For example, we show that for a
work-stealing scheduler on a multi-level private cache hierarchy
Qp(n; Mi, Bi) < Q(n;Mi, Bi) + O(pMiD/Bi) with probabil-
ity 1− δ for each level i, and that this bound is tight.

As an example of the approach consider Strassen’s matrix mul-
tiply. It is nested-parallel because the seven recursive calls can be
made in parallel and the matrix addition can be implemented by
forking off a tree of parallel calls. For n × n matrices the to-
tal depth is O(log2 n)—O(log n) levels of recursion, each with
O(log n) depth for the additions. As shown in [38], the sequential
cache complexity is Q(n; M, B) = O(nlg 7/(B

√
M)). Thus, we

have that Qp(n; M, B) < Q(n;M, B) + O(pM log2(n)/B) for
a single level of private caches and Qp(n; M + pB log2 n, B) ≤
Q(n; M, B) = O(nlg 7/(B

√
M)) for a shared cache. For practi-

cal parameters these bounds indicate either only marginally more
total misses than the sequential version for private caches or only
a marginally larger cache size for shared caches. Similarly good
bounds are obtained for multi-level hierarchies of private or shared
caches, using our results for such hierarchies.

Although matrix multiply and some other known cache-oblivious
algorithms are naturally parallel with low depth (e.g., matrix trans-
pose and FFT [38]), many are not. Importantly, prior cache-oblivious
sorting algorithms with optimal sequential cache complexity [23,
24, 25, 36, 38] are not parallel. This paper presents the first low
(i.e., polylogarithmic) depth cache-oblivious sorting algorithm with
optimal cache complexity. Under the standard “tall cache” assump-
tion M = Ω(B2) [38], our (deterministic) sorting algorithm has
cache complexity Q(n; M, B) = O(n

B
logM n) and work W =

O(n log n), which are optimal, and depth D = O(log2 n). We im-
prove the depth for a randomized version. In contrast, parallelizing
the prior algorithms using known techniques would result in depth
at least Ω(

√
n). We illustrate how our sorting algorithm can be

used to construct the first polylogarithmic depth, cache-oblivious,
optimal cache complexity algorithms for other important problems
such as list ranking and tree contraction. Finally, we present the
first cache-oblivious, low cache complexity algorithm for sparse-
matrix vector (SpMV) multiply on matrices with good vertex sepa-
rators (roughly speaking a sparse matrix has good separators if the
corresponding graph can be partitioned by removing a reasonably
small set of vertices and their incident edges so no partition is too
large). All planar graphs have good separators. The SpMV algo-
rithm is optimal work, O(log2 n) depth, and its sequential cache
complexity improves upon the previous best sequential algorithm
and is optimal for planar graphs.

Other work on parallel cache-oblivious algorithms has concen-
trated on bounding cache misses for particular classes of algorithms.
This includes results by Frigo et al. [39] for a class of algorithms
with a regularity condition, by Blelloch et al. [14] for a class of
binary divide-and-conquer algorithms, and by Chowdhury and Ra-
machandran [28, 29] for a class of dynamic programming and Gaus-
sian elimination-style problems. Recent work by Chowdhury et.

Algorithm 1 MERGE((A, sA, lA), (B, sB, lB), (C, sC))

Merges A[sA : sA + lA) and B[sB : sB + lB)
into array C[sC : sC + lA + lB)

1: if lB = 0 then
2: Copy A[sA : sA + lA) to C[sC : sC + lA)
3: else if lA = 0 then
4: Copy B[sB : sB + lB) to C[sC : sC + lB)
5: else
6: ∀k ∈ [1 : �n1/3�], find pivots (ak, bk) such that ak + bk =

k�n2/3	 and A[sA+ak] ≤ B[sB+bk+1] and B[sB+bk] ≤
A[sA + ak + 1].

7: ∀k ∈ [1 : �n1/3�], MERGE((A, sA + ak, ak+1 −
ak), (B, sB + bk, bk+1 − bk), (C, sC + ak + bk))

8: end if

al. [31] has studied cache oblivious algorithms for a parallel model
with a tree of caches. Our design motive is to have a generic ap-
proach that enables one to analyze an algorithm independently of
the model in a simple way and then map onto different machines;
we study SpMV-multiply, sorting and related algorithms as spe-
cific instances of our general approach. Our work may also be con-
trasted with that of [7], which presents cache-efficient algorithms
for private caches but the algorithms are not cache oblivious and
are based on a fixed number of processors p.

A preliminary version of this paper appeared as a three page brief
announcement in SPAA’09 [17].

2. SORTING
In this section, we present the first cache-oblivious sorting algo-

rithm that achieves optimal work, polylogarithmic depth, and good
sequential cache complexity. Prior cache-oblivious algorithms with
optimal cache complexity [23, 24, 25, 36, 38] have Ω(

√
n) depth.

2.1 Algorithm Preliminaries
Our sorting algorithm uses known algorithms for matrix trans-

pose, prefix sum and merging as subroutines. We first describe
the exact variants of these algorithms that the sorting algorithm
uses. The costs are summarized in Figure 1. The standard divide-
and-conquer matrix-transpose algorithm [38] is work optimal, has
logarithmic depth and has optimal cache complexity when M =
Ω(B2). A simple variant of the tree-based parallel prefix-sums al-
gorithm has logarithmic depth and cache complexity O(n/B). As
usual the algorithm works in two phases generating partial sums
in a tree in one phase and propagating results down in the next.
Each phase is implemented using divide-and-conquer over the tree.
For cache efficiency, the tree of partial sums is laid out in the in-
fix order. This gives an algorithm that runs with cache complexity
O(n/b) and depth O(log n) even if the cache only has a single
cache line.

Algorithm 1 merges two arrays A and B of sizes lA and lB
(lA + lB = n). The pivots ranked {n2/3, 2n2/3, . . . } can be
found using a dual binary search on the arrays. This takes O(n1/3 ·
log n) work, O(log n) depth and at most O(n1/3 log (n/B)) cache
misses. Once the locations of pivots have been identified, the subar-
rays which are of output size n2/3 each can be recursively merged
and appended. The recursive relation for the cache complexity is

Q(n; M, B) ≤
j

k1n
1/3(log (n/B) + Q(n2/3; M, B)) n > cM

k2n/B + 1 otherwise

for some positive constants c, k1 and k2. When n > cM , this

190

Problem Depth Cache Complexity Section

Matrix Transpose (n×m matrix) O(log (n + m)) O(�nm/B) [38]
Prefix Sums O(log n) O(�n/B) 2.1
Merge O(log n) O(�n/B) 2.1
Sort (deterministic)∗ O(log2 n) O(�n/B	�logM n) 2.2
Sort (randomized; bounds are w.h.p.)∗ O(log1.5 n) O(�n/B	�logM n) 2.3
Sparse-Matrix Vector Multiply (m nonzeros, nε separators)∗ O(log2 n) O(�m/B + n/M1−ε) 4

Figure 1: Low-depth cache-oblivious algorithms. New algorithms are marked (∗). All algorithms are work optimal and their cache
complexities match the best sequential algorithms. The bounds assume M = Ω(B2).

recursion satisfies

Q(n; M, B) = O(n/B + n1/3 log (n/B)).

If M = Ω(B2) and n > cM , then the first term in the expres-
sion for cache complexity O(n/B) is asymptotically larger than
n1/3 log (n/B), making the second term redundant. Therefore, in
all cases, Q(n;M, B) = O(�n/B). The recurrence relation for
depth is:

D(n) ≤ log n + D(n2/3),

which solves to D(n) = O(log n). It is easy to see that the work
involved is linear.

Using this merge algorithm in a mergesort in which the two re-
cursive calls are parallel gives an algorithm with depth O(log2 n)
and cache complexity O((n/B) log2 (n/M)), which is not opti-
mal. Blelloch et al. [14] analyze similar merge and mergesort al-
gorithms with the same (suboptimal) cache complexities but with
larger depth.

2.2 Deterministic Sorting
Our parallel sorting algorithm is based on a version of sample

sort [37, 45], and has optimal cache complexity. Sample sorts first
use a sample to select a set of pivots that partition the keys into
buckets, then route all the keys to their appropriate buckets, and
finally sort within the buckets. Compared to prior cache-friendly
(sequential) sample sort algorithms [2, 41], which with slight mod-
ification can be improved to Ω(

√
n) depth, our cache-oblivious al-

gorithm uses (and analyzes) a new parallel bucket-transpose algo-
rithm for the key distribution phase, in order to achieve O(log2 n)
depth.

The algorithm (Algorithm COSORT in Figure 2) first splits the
set of elements into

√
n subarrays of size

√
n and recursively sorts

each of the subarrays. Then, samples are chosen to determine piv-
ots. This step can be done either deterministically or randomly. We
first describe a deterministic version of the algorithm for which the
repeat and until statements are not needed; Section 2.3 will de-
scribe a randomized version that uses these statements. For the de-
terministic version, we choose every (log n)-th element from each
of the subarrays as a sample. The sample set, which is smaller
than the given data set by a factor of log n, is then sorted using
the mergesort algorithm outlined above. Because mergesort is rea-
sonably cache-efficient, using it on a set slightly smaller than the
input set is not too costly in terms of cache complexity. More pre-
cisely, this mergesort does not incur more than O(�n/B) cache
misses. We can then pick

√
n evenly spaced keys from the sample

set P as pivots to determine bucket boundaries. To determine the
bucket boundaries, the pivots are used to split each subarray using
the cache-oblivious merge procedure. This procedure also takes no
more than O(�n/B) cache misses.

Once the subarrays have been split, prefix sums and matrix trans-
pose operations can be used to determine the precise location in the

buckets where each segment of the subarray is to be sent. This map-
ping information is stored in a matrix T of size

√
n × √n. Note

that none of the buckets will be loaded with more than 2
√

n log n
keys because of the way we select pivots.

Once the bucket boundaries have been determined, the keys need
to be transferred to the buckets. Although a naive algorithm to do
this is not cache-efficient, we show that the bucket transpose al-
gorithm (Algorithm B-TRANSPOSE in Figure 2) is. The bucket
transpose is a four way divide-and-conquer procedure on the (al-
most) square matrix T which indicates a set of segments of subar-
rays (segments are contiguous in each subarray) and their target lo-
cations in the bucket. The matrix T is cut in half vertically and hor-
izontally and separate recursive calls are assigned the responsibility
of transferring the keys specified in each of the four parts. Note that
ordinary matrix transpose is the special case of Ti,j = 〈j, i, 1〉 for
all i, j.

LEMMA 2.1. Algorithm B-TRANSPOSE transfers a matrix of√
n × √n keys into bucket matrix B of

√
n buckets according to

offset matrix T in O(n) work, O(log n) depth, and O(�n/B) se-
quential cache complexity.

PROOF. (sketch) For each node v in the recursion tree of bucket
transpose, we define the node’s size s(v) to be n2, the size of its
submatrix T , and the node’s weight w(v) to be the number of keys
that T is responsible for transferring. We identify three classes of
nodes in the recursion tree:

1. Light-1 nodes: A node v is light-1 if s(v) < M/100, w(v) <
M/10, and its parent node is of size ≥M/100.

2. Light-2 nodes: A node v is light-2 if s(v) < M/100, w(v) <
M/10, and its parent node is of weight ≥M/10.

3. Heavy leaves: A leaf v is heavy if w(v) ≥M/10.

The union of these three sets covers the responsibility for transfer-
ring all the keys, i.e., all leaves are accounted for in the subtrees of
these nodes.

From the definition of a light-1 node, it can be argued that all
the keys that a light-1 node is responsible for fit inside a cache,
implying that the subtree rooted at a light-1 node cannot incur more
than M/B cache misses. It can also be seen that light-1 nodes can
not be greater than 4n/(M/100) in number leading to the fact that
the sum of cache complexities of all the light-1 nodes is no more
than O(�n/B).

Light-2 nodes are similar to light-1 nodes in that their target data
fits into a cache of size M . If we assume that they have combined
weight of n−W , then there are no more than 4(n−W)/(M/10)
of them, putting the aggregate cache complexity for their subtrees
at 40(n−W)/B.

A heavy leaf of weight w incurs �w/B	 cache misses. There are
no more than W/(M/10) of them, implying that their aggregate
cache complexity is W/B + 10W/M < 11W/B. Therefore, the
cache complexities of light-2 nodes and heavy leaves adds up to

191

Algorithm COSORT(A, n)
if n < 10 then

return Sort A sequentially
end if
h← �√n	
∀i ∈ [1 : h], Let Ai ← A[h(i− 1) + 1 : hi]
∀i ∈ [1 : h], Si ← COSORT(Ai, h)
repeat

Pick an appropriate sorted pivot set P of size h
∀i ∈ [1 : h], Mi ← SPLIT(Si,P)
{Each array Mi contains for each bucket j a start location in Si for bucket
j and a length of how many entries are in that bucket, possibly 0.}
L← h× h matrix formed by rows Mi with just the lengths
LT ← TRANSPOSE(L)
∀i ∈ [1 : h], Oi ← PREFIX-SUM(LT

i)
OT ← TRANSPOSE(O) {Oi is the ith row of O}
∀i, j ∈ [1 : h], Ti,j ← 〈Mi,j〈1〉, OT

i,j , Mi,j〈2〉〉
{Each triple corresponds to an offset in row i for bucket j, an offset in
bucket j for row i and the length to copy.}

until No bucket is too big
Let B1, B2, . . . , Bh be arrays (buckets) of sizes dictated by T
B-TRANSPOSE(S, B, T , 1, 1, h)
∀i, B′

i ← COSORT(Bi, length(Bi))
return B′

1||B′
2|| . . . ||B′

h

Algorithm B-TRANSPOSE(S, B, T , is, ib, n)
if (n = 1) then

Copy Sis [Tis,ib〈1〉 : Tis,ib〈1〉+ Tis,ib〈3〉)
to Bib [Tis,ib〈2〉 : Tis,ib〈2〉+ Tis,ib〈3〉)

else
B-TRANSPOSE(S, B, T , is, ib, n/2)
B-TRANSPOSE(S, B, T , is, ib + n/2, n/2)
B-TRANSPOSE(S, B, T , is + n/2, ib, n/2)
B-TRANSPOSE(S, B, T , is + n/2, ib + n/2, n/2)

end if

S B

T

j

i

j

i

Bucket transpose diagram: The 4x4 entries shown for T dictate the
mapping from the 16 depicted segments of S to the 16 depicted seg-
ments of B. Arrows highlight the mapping for two of the segments.

Figure 2: Cache-Oblivious Sorting and Bucket-Transpose Algorithms

another O(�n/B). We also note that the validity of this proof does
not depend on the size of the individual buckets. The statement of
the lemma holds even for the case where each of the buckets is as
large as O(

√
n log n).

THEOREM 2.2. On an input of size n, the deterministic COSORT
has Q(n; M, B) = O(�n/B	�logM n) sequential cache com-
plexity, O(n log n) work, and O(log2 n) depth.

PROOF. All the subroutines other than recursive calls to COSORT
have linear work and cache complexity O(�n/B). Also, the sub-
routine with the maximum depth is the mergesort used to find piv-
ots; its depth is O(log2 n). Therefore, the recurrence relations for
the work, depth, and cache complexity are as follows:

W (n) = O(n) +
√

nW (
√

n) +

√
nX

i=1

W (ni)

D(n) = O(log2 n) + max
√

n
i=1{D(ni)}

Q(n; M, B) = O
“l n

B

m”
+
√

nQ(
√

n; M, B)+

√
nX

i=1

Q(ni; M, B),

where the nis are such that their sum is n and none individually
exceed 2

√
n log n. The base case for the recursion for cache com-

plexity is Q(n; M, B) = O(�n/B) for n < cM for some con-
stant c. Solving these recurrences proves the theorem.

2.3 Randomized Sorting
A simple randomized version of the sorting algorithm is to ran-

domly pick
√

n elements for pivots, sort them using brute force
(compare every pair) and using the sorted set as the pivot set P .
This step takes O(n) work, O(log n) depth (let cn be a constant

such that depth is at most cn log(n)) and has cache complexity
O(n/B) and the probability that the largest of the resultant buck-
ets are larger than 3

√
n log n is not more 1 − 1/n. When one of

the buckets is too large (> 3
√

n log n), the process of selecting
pivots and recomputing bucket boundaries is repeated. Because the
probability of this happening repeatedly is low, the overall depth of
the algorithm is small. Further, the recursion is stopped when the
problem size reduces to 240.

THEOREM 2.3. On an input of size n, the randomized version
of COSORT has, with probability greater than 1−1/n, Q(n; M, B) =
O(�n/B	�logM n) sequential cache complexity, O(n log n) work,
and O(log1.5 n) depth.

PROOF. (sketch) In a call to randomized COSORT with input
size n, the loop terminates with probability 1− 1/n in each round
and takes less than 2 iterations on average to terminate. Each it-
eration of the while loop, including the brute force sort requires
O(n) work and incurs at most O(�n/B) cache misses with high
probability. Therefore,

E[W (n)] = O(n) +
√

n E[W (
√

n)] +

√
nX

i=1

E[W (ni)],

where each ni < 3
√

n log n and
P√

n
i=1 ni = n. This implies that

E[W (n)] = O(n log n). Similarly for cache complexity we have

E[Q(n; M, B)]

= O
“ n

B

”
+
√

n E[Q(
√

n; M, B)] +

√
nX

i=1

E[Q(ni; M, B)],

which implies E[Q(n; M, B)] = O
`

n
B

log√
M n

´
= O

`
n
B

logM n
´
.

To show the high probability bounds for work and cache complex-

192

ity, we can use Chernoff bounds since the fan out at each level of
recursion is high.

To analyze the depth of the dag, we obtain high probability bounds
on the depth of each level of recursion tree (we assume that the lev-
els are numbered starting with the root at level 0). To get sufficient
confidence bounds at each level we might have to execute the outer
loop more times toward the leaves where the problem size is small.
Each iteration of the outer loop at node N of input size m at level
k in the recursion tree has depth log m and the termination proba-
bility of the loop is 1− 1/m.

We first show probability bounds on the depth of a maximal path
in the computation dag. We represent the path as a recursion tree
and show that the sum of depths of all nodes at level d in the re-
cursion tree is at most cd log3/2 n/ log2 log2 n with probability

at least 1 − 1/n(log2 log2 n)2 (for some constant cd to be defined
shortly) and that the recursion tree is at most 1.5 log2 log2 n levels
deep. This will prove that the depth of the recursion tree (i.e.the
path) is 1.5cd log3/2 n with probability at least

1− (1.5 log2 log2 n)/nlog2
2 log2 n.

Since each of the paths is a candidate for the critical path, the actual
depth is a maximum over all such paths. We will argue that there
are not more than C(n) = n1.5 log2 log2 n such paths. Then, by the
union bound, it follows that the probability that any single path is
longer than 1.5cd log3/2 n is less than

1.5 log log n/n(log2 log2 n)2−1.5 log2 log2 n

(high probability bound).
The maximum number of levels in the recursion tree can be

bounded using the recurrence relation X(n) ≥ 1+ X(3
√

n log n)
and X(240) = 1. Using induction, it is straightforward to show
that this solves to X(n) < 1.5 log2 log2 n. Similarly the num-
ber of paths C(n) can be bounded using the relation C(n) >
(
√

nC(
√

n))(
√

nC(2
√

n log n)). Again, using induction, this re-
lation can be used to show that C(n) = n1.5 log2 log2 n.

To compute the sum of the depth of nodes at level d in the recur-
sion tree, we consider two cases: (1) when d > 80 log2 log2 log2 n
and (2) otherwise.

Case 1: The size of a node one level deep in the recursion tree
is at most 3

√
n log n ≤ n1/2+r for r = 1/6. Also, the size of

a node which is d levels deep is at most n(1/2+r)d

, each cost-
ing cn(1/2 + r)d log n depth per trial. Since there are at most 2d

nodes at level d in the recursion tree, and the failure probability of
a loop in any node is no more than 1/2, we show that the proba-
bility of having to execute more than (2d · log1/2 n)/((1 + 2r)d ·
log2 log2 n) loops is small. Since we are estimating the sum of 2d

independent variables, we use Chernoff bounds of the form:

Pr[X > (1 + δ)μ] ≤ e−δ2μ, (1)

with μ = (2 ·2d), δ = (1/2)(log1/2 n/((1+2r)d · log2 log2 n))−
1. The resulting probability bound is less than 1/nlog2

2 log2 n for
d > 80 log2 log2 log2 n. Therefore, the contribution of nodes at
level d in the recursion tree to the depth of recursion tree is at most
2d · (1/2 + r)dcn log n · log1/2 n/((1 + 2r)d · log2 log2 n) =

cn log3/2 n/ log2 log2 n with probability at least 1−1/nlog2
2 log2 n.

Case 2: We classify all nodes at level d in to two kinds, the
large ones with size greater than log2 n and the smaller ones with
size at most log2 n. The total number of nodes is at most 2d <
(log2 log2 n)80. Consider the small nodes. Each small node can
contribute a depth of at most 2cn log2 log2 n to the recursion tree
and there are at most (log2 log2 n)80 of them. If we set cd to be the

minimum number such that cd log3/2 n > cn log2 log82
2 n, then the

contribution of small nodes to depth of the recursion tree at level d
is lesser than cd log3/2 n/ log2 log2 n.

We use Chernoff bounds to bound the contribution of large nodes
to the depth of the recursion tree. Suppose that there are j large
nodes. We show that with probability not more than 1/nlog2 log n,
it takes more than 10 · j loop iterations at depth d for j of them
to succeed. For this, consider 10 · j random independent trials
with success probability at least 1 − 1/ log2 n each. The expected
number of failures is no more than μ = 10 · j/ log2 n. We want to
show that the probability that there are greater than 9 · j failures in
this experiment is tiny. Using Chernoff bounds with the above μ,
and δ = (0.9 · log2 n−1), we infer that this probability is less than

1/nlog2
2 log2 n. Since j < 2d, the depth contributed by the larger

nodes is at most 2d(1/2+1/6)d log n < cd log3/2 n/ log2 log2 n.
We have shown that each level in the recursion tree adds at most

cd log3/2 n/ log2 log2 n depth to a path with probability at least 1−
1/nlog2

2 logn n. The proof follows from the union bound described
earlier.

3. APPLICATIONS OF SORTING: GRAPH
ALGORITHMS

In this section, we make use of the fact that the PRAM algo-
rithms for many problems can be decomposed into primitive oper-
ations such as scans and sorts. Our approach is similar to that of [7]
except that we use the cache-oblivious model instead of the paral-
lel external memory model. Arge et al. [5] demonstrate a cache-
oblivious algorithm for list ranking using priority queues and use
it to construct other graph algorithms. But their algorithms have
Ω(n) depth because list ranking uses a serially-dependent sequence
of priority queue operations to compute independent sets. Our par-
allel algorithms derived from sorting are the same as in [27] ex-
cept that we use different algorithms for the primitive operations
scan and sort, which suit our cache-oblivious framework. More-
over, a careful analysis (using standard techniques) is required to
prove our sequential cache complexity and depth bounds under this
framework.

List Ranking. A basic strategy for list ranking [40] is the follow-
ing: (i) shrink the list to size O(n/ log n), and (ii) apply pointer
jumping on this shorter list. Stage (i) is achieved through finding
independent sets in the list of size Θ(n) and removing them to yield
a smaller problem. This can be done randomly using the random
mate technique in which case, O(log log n) rounds of such reduc-
tion would suffice. Alternately, we could use the deterministic tech-
nique described in section 3.1 of [40]: use two rounds of Cole and
Vishkin’s deterministic coin tossing [32] to find a O(log log n)-
ruling set and then convert the ruling set to an independent set of
size at least n/3 in O(log log n) rounds. Arge et al. [8] show how
this conversion can be made cache-efficient, and it is straightfor-
ward to change this algorithm to a cache-oblivious one. Stage (ii)
uses O(log n) rounds of pointer jumping, each round essentially
involving a sort operation to figure out the next level of pointer
jumping. Thus, the cache complexity of this stage is asymptoti-
cally the same as sorting and its depth is O(log n) times the depth
of sorting:

THEOREM 3.1. The deterministic list ranking outlined above
has Q(n;M, B) = O(�n/B	�logM n) sequential cache com-
plexity, O(n log n) work, and O(Dsort(n) log n) depth.

Graph Algorithms. We tabulate the complexity measures of basic
graph algorithms on bounded degree graphs (Figure 3). The al-

193

Problem Depth Cache Complexity

List Ranking DLR(n) = O(Dsort(n) log n) O(Qsort(n))
Euler Tour on Trees O(DLR(n)) O(Qsort(n))
Tree Contraction O(DLR(n) log n) O(Qsort(n))
Least Common Ancestors (k queries) O(DLR(n)) O(�k/n	Qsort(n))

Connected Components O(DLR(n) log n) O(Qsort(|E|) log(|V |/√M))

Minimum Spanning Forest O(DLR(n) log n) O(Qsort(|E|) log(|V |/√M))

Figure 3: Low-depth cache-oblivious graph algorithms. All algorithms are deterministic. The bounds assume M = Ω(B2). Dsort

and Qsort are the depth and cache complexity of cache-oblivious sorting.

gorithms that lead to these complexities are straightforward cache-
oblivious adaptations of known PRAM algorithms (as described
for the external memory model in [27]) using primitives from ear-
lier sections. For instance, finding an Euler Tour involves scanning
the input to compute the successor function for each edge and run-
ning a list ranking. Tree contraction involves constructing an Euler
tour of the tree, finding an independent set on it and contracting the
tour to recursively solve a smaller problem. Finding Least Com-
mon Ancestors of a set of vertex pairs in a tree involves computing
the Euler tour and reducing the problem to a range minima query
problem (which is solved with search trees). Deterministic algo-
rithms for Connected Components and Minimum Spanning Forest
are similar and use tree contraction as their basic idea; the cache
bounds are slightly worse than those in [27]: log(|V |/√M) ver-
sus log(|V |/M). While [27] uses knowledge of M to transition
to a different approach once the vertices in the contracted graph
fit within the cache, cache-obliviously we need for the edges to fit
before we stop incurring misses.

4. SPARSE-MATRIX VECTOR MULTIPLY
We consider the problem of multiplying a sparse n × n matrix

with m non-zeros by a dense vector. For general sparse matrices
Bender et al. [10] show a lower bound on cache complexity, which
for m = O(n) matches the sorting lower bound. However, for
certain matrices common in practice the cache complexity can be
improved. For example, for matrices with non-zero structure cor-
responding to a well-shaped d-dimensional mesh, a multiply can
be performed with cache complexity O(m/B + n/M1/d) [11].
This requires pre-processing to lay out the matrix in the right form.
However, for applications that run many multiplies over the same
matrix, as with many iterative solvers, the cost of the pre-processing
can be amortized. Note that for M ≥ Bd (e.g., the tall-cache as-
sumption in 2 dimension), the cache complexity reduces to O(m/B)
which is asymptotically the same as scanning memory.

The cache-efficient layout and bounds for well-shaped meshes
can easily be extended to graphs with good edge separators [14].
The layout and algorithm, however, is not efficient for graphs such
as planar graphs or graphs with constant genus that have good ver-
tex separators but not necessarily any good edge separators. In this
paper we generalize the results to graphs with good vertex sep-
arators and present the first cache-oblivious, low cache complex-
ity algorithm for the sparse-matrix multiplication problem on such
graphs. We do not analyze the cost of finding the layout, which
involves the recursive application of finding vertex separators, as it
can be amortized across many solver iterations. Our algorithm for
matrices with nε separators has linear work, O(log2 n) depth, and
O(m/B + n/M1−ε) sequential cache complexity.

Let S be a class of graphs that is closed under the subgraph re-
lation. We say that S satisfies a f(n)-vertex separator theorem
if there are constants α < 1 and β > 0 such that every graph

Algorithm BuildTree(V, E)

if |E| = 1 then
return V

end if
(Va, Vsep, Vb)← FindSeparator(V, E)
Ea ← {(u, v) ∈ E|u ∈ Va ∨ v ∈ Va}
Eb ← E − Ea

Va,sep ← Va ∪ Vsep

Vb,sep ← Vb ∪ Vsep

Ta ← BuildTree(Va,sep, Ea)
Tb ← BuildTree(Vb,sep, Eb)
return SeparatorTree(Ta, Vsep, Tb)

Algorithm SparseMxV(x,T)
if isLeaf(T) then

T .u.value← x[T .v.index]⊗ T .wvu

T .v.value← x[T .u.index] ⊗ T .wuv

{Two statements for the two edge directions}
else

SparseMxV(T .left) and SparseMxV(T .right)
for all v ∈ T .vertices do

v.value← (v.left→value ⊕ v.right→value)
end for

end if

Figure 4: Cache-Oblivious Algorithms for Building a Separa-
tor Tree and for Sparse-Matrix Vector Multiply

G = (V, E) in S with n vertices can be partitioned into three sets
of vertices Va, Vs, Vb such that |Vs| ≤ βf(n), |Va|, |Vb| ≤ αn, and
{(u, v) ∈ E|(u ∈ Va ∧ v ∈ Vb) ∨ (u ∈ Vb ∧ v ∈ Va)} = ∅ [43].
In our presentation we assume the matrix has symmetric non-zero
structure (if it is asymmetric we can always add zero weight reverse
edges while at most doubling the number of edges).

We now describe how to build a separator tree assuming we have
a good algorithm FindSeparator for finding separators. For planar
graphs this can be done in linear time [43]. The algorithm for build-
ing the tree is defined by Algorithm BuildTree in Figure 4. At each
recursive call it partitions the edges into two subsets that are passed
to the left and right children. All the vertices in the separator are
passed to both children. Each leaf corresponds to a single edge.
We assume that FindSeparator only puts a vertex in the separator
if it has an edge to each side and always returns a separator with
at least one vertex on each side unless the graph is a clique. If the
graph is a clique, we assume the separator contains all but one of
the vertices, and that the remaining vertex is on the left side (Va) of
the partition. By convention we place any edges between vertices
in the separator in Eb.

Every vertex of degree Δ in our original graph corresponds to a
binary tree embedded in the separator tree with Δ leaves, one for

194

each of its incident edges. To see this consider a single vertex. Ev-
ery time it appears in a separator, its edges are partitioned into two
sets, and the vertex is copied to both recursive calls. Because the
vertex will appear in Δ leaves, it must appear in Δ− 1 separators,
so it will appear in Δ − 1 internal nodes of the separator tree. We
refer to the tree for a vertex as the vertex tree, each appearance of
a vertex in the tree as a vertex copy, and the root of each tree as
the vertex root. The tree is used to sum the values for matrix vector
multiply.

We reorder the rows/columns of the matrix based on a preorder
traversal of their root locations in the separator tree (i.e., all vertices
in the top separator will appear first). This is the order we will
use for the input vector x and output vector y when calculating
y = Ax. We keep a vector R in this order that points to each of the
corresponding roots of the tree. The separator tree is maintained as
a tree T in which each node keeps its copies of the vertices in its
separator. Each of these vertex copies will point to its two children
in the vertex tree. Each leaf of T is an edge and includes the indices
of its two endpoints and its weight. In all internal vertex copies we
keep an extra value field to store a temporary variable, and in the
leaves we keep two value fields, one for each direction. Finally
we note that all data for each node of the separator tree is stored
adjacently (i.e., all its vertex copies are stored one after the other),
and the nodes are stored in preorder. This is important for cache
efficiency.

Our algorithm for sparse-matrix vector multiplication is described
in Algorithm SparseMxV in Figure 4. This algorithm will take the
input vector x and leave the results of the matrix multiplication in
the root of every vertex. To gather the results up into a result vector
y we simply use the root pointers R to fetch each root. The algo-
rithm does not do any work beyond the recursive calls on the way
down the recursion, but when it gets to a leaf the edge multiplies
its two endpoints by its weight putting the result in its temporary
value. If the matrix is symmetric then only one weight is needed.
Then on the way back up the recursion the algorithms sums these
values. In particular whenever it gets to an internal node of a vertex
tree it adds the two children. Since the algorithm works bottom up
the values of the children are always ready when the parent reads
them.

THEOREM 4.1. LetM be a class of matrices for which the ad-
jacency graphs satisfy an nε-vertex separator theorem. Algorithm
SparseMxV on an n × n matrix A ∈ M with m ≥ n non-zeros
has O(m) work, O(log2 n) depth and O(�m/B + n/M1−ε) se-
quential cache complexity.

PROOF. For a constant k we say a vertex copy is heavy if it
appears in a separator node with size (memory usage) larger than
M/k. We say a vertex is heavy if it has any heavy vertex copies.
We first show that the number of heavy vertex copies for any con-
stant k is bounded by O(n/M1−ε) and then bound the number of
cache misses based on the number of heavy copies.

For a node of n vertices, the size X(n) of the tree rooted at the
node is bounded by the separator condition giving the recurrence
relation:

X(n) ≤ max
1/2≥α′≥α

{X(α′n) + X((1− α′)n) + βnε}

This recurrence is satisfied by X(n) = k(n − nε), k = β/(αε +
(1 − α)ε − 1). Therefore, there exists a constant c such that for
n < cM , the subtree rooted at node of n vertices fits into the cache.
We use this to count the number of heavy vertex copies H(n). The
recurrence relation for H(n) is:

H(n) ≤ max
α≤α′≤ 1

2

{H(α′n) + H((1− α′)n) + βnε},

Shared Memory

…

…

Z2

P

Z1

Zk

Z2

P

Z1

Zk

Z2

P

Z1

Zk

Shared Memory

…

Z2

Z1

P

Zk

P P

Figure 5: Left: Parallel Multi-level Distributed Hierar-
chy (PMDH). Right: Parallel Multi-level Shared Hierarchy
(PMSH).

for n > cM and 0 otherwise. This recurrence relation is satisfied
by H(n) = k(n/(cM)1−ε − βnε) = O(n/M1−ε).

Now we note that if a vertex is not heavy (i.e., light) it is only
used by a single subtree that fits in cache. Furthermore because
of the ordering of the vertices based on where the roots appear, all
light vertices that appear in the same subtree are adjacent. There-
fore the total cost of cache misses for light vertices is O(n/B).
We note that the edges are traversed in order so they only incur
O(m/B) misses. Now each of the heavy vertex copies can be re-
sponsible for at most O(1) cache misses. In particular reading each
child can cause a miss. Furthermore reading the value from a heavy
vertex (at the leaf of the recursion) could cause a miss since it is not
stored in the subtree that fits into cache. But the number of subtrees
that just fit into cache (i.e., their parents don’t) and read a vertex u
is bounded by one more than the number of heavy copies of u.
Therefore we can count each of those misses against a heavy copy.
We therefore have a total of O(m/B + n/M1−ε) misses.

The work is simply proportional to the number of vertex copies,
which is less than twice m and hence is bounded by O(m). For
the depth we note that the two recursive calls can be made in par-
allel and furthermore the for all statement can be made in paral-
lel. Furthermore the tree is depth O(log n) because of the balance
condition on separators. Since the branching of the for all takes
O(log n) depth, the total depth is bounded by O(log2 n).

5. MAPPING TO PARALLEL MULTI-LEVEL
HIERARCHIES

In this section, we discuss how (low-depth) algorithms designed
for the cache-oblivious model can be scheduled on natural multi-
level generalizations of one-level private or shared cache machines,
such that we can upper bound the parallel cache complexity and
the parallel run time. We begin by defining the two models we
consider.

5.1 PMDH and PMSH Models
We consider a Parallel Multi-level Distributed Hierarchy (PMDH)

(Figure 5(left)), where each of the p processors has a multi-level
private hierarchy and a Parallel Multi-level Shared Hierarchy (PMSH)
(Figure 5(right)), where all the processors share a multi-level cache
hierarchy. All computation by a processor p occurs on data in p’s
(private or shared) level-one cache. One or more cache lines of a
given cache at level i < k fit precisely in a cache line of its “par-
ent” cache at level i + 1. We assume the cache hierarchy is inclu-
sive: each cached word at level i < k is also cached in its parent
cache at level i+1. A processor requesting a memory word fetches
the cache line containing the word from the lowest-level ancestor
cache containing the line (and populates all intervening caches). If
the processor writes to the memory word, only the level-one cache
line is updated and the line becomes dirty. Whenever a dirty line

195

is evicted from a cache, its contents are written back to the corre-
sponding line in its parent cache. Each cache is fully associative
and uses an optimal replacement policy (within the constraints of
being inclusive).

Cache Consistency in PDMH. In private cache models, the same
memory word can be in the caches of multiple processors and these
copies must be kept consistent. As in the two-level private cache
model studied by Frigo et al. [39], the multi-level PMDH assumes
a variant of the dag consistency cache consistency model [19] that
uses an optimal replacement policy instead of LRU replacement.
(We revisit LRU replacement in Section 6.) Caches are non-interfering
in that the cache misses of one processor can be analyzed indepen-
dent of other processors. To maintain this property, Frigo et al. use
the BACKER protocol [19]. This protocol manages caches so that
if an instruction j is a descendant of instruction i, then values writ-
ten to memory words by i are reflected in j’s memory accesses.
However, concurrent writes to objects by instructions that do not
have a path between them in the dag will not be communicated be-
tween processors executing these instructions. Such writes are rec-
onciled to shared memory and reflected in other cache copies only
when a descendant of the instruction that performed these writes
tries to access them. Reconciliation of a memory block involves
updating all written words within the block; the protocol must track
all such writes. In case of multiple writes to the same word, an arbi-
trary write succeeds. Concurrent reads are permitted. We likewise
assume the same non-interfering property, with the same reconcili-
ation process.

5.2 Extending Private Cache Results to Mul-
tiple Levels

Because each processor in the PMDH model has its own private
memory hierarchy, it is better to have each processor work on parts
of computations that are as far apart as possible. The work stealing
scheduler [21, 9, 1] is an ideal choice for such a system. In its
simpler form, a work stealing scheduler maintains a task dequeue
for each processor. When a processor spawns a new job, the new
job is queued at the tail of its dequeue. When a processor runs out
of work, it pulls out the job at the head of its task queue. If its own
task queue is empty, the processors randomly picks another task
queue to steal from. This version of the work stealing is referred
to as randomized work stealing. Another (perhaps less practical)
version of work stealing uses a single shared task dequeue for all
processors; we refer to this as centralized work stealing.

We derive run time bound for algorithms under randomized work
stealing for the PMDH such that the only algorithm-specific metrics
in the bound are W , D and the sequential cache complexity Q. (To
simplify notation, we will use Q(M, B) instead of Q(n; M, B)
in the remainder of this section.) Given a particular execution X
of a computation A on some parallel machine P , let c(x) be the
cost of instruction x. This cost includes the time for accessing the
data used by x; if the access needs to fetch the data from level i
cache, the cost is Ci (we view the shared memory as level k +
1). The latency added work under execution X is W lat

A,P (X) =P
x∈A c(x). The latency-added work, W lat

A,P , of a computation is
the maximum of W lat

A,P (X) over all executions X. This can be
bounded by W +

Pk+1
i=2 (Q(Mi−1, Bi−1) − Q(Mi, Bi)) · Ci +

(#S)(Mk/Bk)Ck, where #S is the number of steals. The latency
added depth Dlat

A,P can be defined using c(x) similarly: it is the
maximum of

P
x∈P c(x) over all paths P in A. We note that D ·

Ck+1 is a pessimistic upper bound on the latency-added depth for
any machine.

THEOREM 5.1. (Upper Bounds) For any δ > 0, when a cache-
oblivious nested-parallel computation A with binary forking, se-
quential cache complexity Q(M, B), work W , and depth D is
scheduled on a PMDH P of p processors using randomized work
stealing:

• The number of steals is O(p(Dlat
A,P + log 1/δ)) with proba-

bility at least 1− δ.

• All the caches at level i incur a total of less than Q(Mi, Bi)+
O(p(Dlat

A,P +log 1/δ)Mi/Bi) cache misses with probability
at least 1− δ.

• The computation completes in time not more than W lat
A,P /p+

Dlat
A,P < W/p + O(p(DCk+1 + log 1/δ)Ck+1Mk/Bk +Pk
i=1 Ci(Q(Mi−1, Bi−1)−Q(Mi, Bi)))/p+DCk+1 with

probability at least 1− δ.

PROOF. We use Lemma 12 from [21] to bound the number of
steals. Since that result uses a simpler model for the computation
that does not charge cache miss costs towards run time, we reduce
our dag to a simpler form on which the lemma can be applied di-
rectly. For each instruction in A, we replace the instruction by
a chain of c(x) (according to some execution) sequential instruc-
tions. Each of these replaced instructions take unit time. If x is a
fork (join) point, the last (first) node in this chain does the equiva-
lent fork (join). Since we assume a dag-consistent memory model,
the run time of this modified computation A′ is the same as that
of A. Since the depth of A′ under any execution does not exceed
Dlat

A,P , the schedule involves not more than O(p(Dlat
A,P +log 1/δ))

steals with probability at least 1− δ, all the caches at level i incur a
total of at most Q(Mi, Bi)+O(p(Dlat

A,P +log 1/δ)Mi/Bi) cache
misses with probability at least 1 − δ. To bound the running time
of the computation A′ which has at most W lat

A,P instructions and
Dlat

A,P depth, we use Theorem 13 from [21]. Since W lat
A,P ≤ W +P

i Ci · (Q(Mi−1, Bi−1) − Q(Mi, Bi)), the run time is at most
W+O(p(Dlat

A,P +log 1/δ)CkMk/Bk+
P

i Ci(Q(Mi−1, Bi−1)−
Q(Mi, Bi))) with probability at least 1 − δ, the claim about the
running time follows.

Thus, for constant δ, the parallel cache complexity at level i ex-
ceeds the sequential cache complexity by O(pDlat

A,P Mi/Bi) with
probability 1−δ. The bounds in Theorem 5.1 carry over to central-
ized work stealing without the δ terms, e.g., the parallel cache com-
plexity exceeds the sequential cache complexity by O(pDlat

A,P Mi/Bi).
Throughout this section, the runtime bounds do not include sched-
uler overheads (which would increase the runtime by at most a
small constant factor).

THEOREM 5.2. (Lower Bound) For a PMDH P with any given
number of processors p = Ω(log D), cache sizes M1 < · · · <
Mk ≤ M/3 for some a priori upper bound M , cache line sizes
B1 ≤ · · · ≤ Bk, and cache latencies C1 < · · · < Ck+1, and
for any given depth D′ ≥ 3(log p + log M) + Ck+1 + c0 (for
some constant c0), we can construct a nested-parallel computation
DAG with binary forking and depth D′, whose (expected) parallel
cache complexity on P , for all levels i, exceeds the sequential cache
complexity Q(Mi, Bi) by Ω(pDlat

A,P Mi/Bi) when scheduled using
randomized or centralized work stealing.

PROOF. Randomized work stealing: Such a construction is
shown in Figure 6(a). Based on the earlier lemma, we know that
there exist a constant K such that the number of steals is at most
KpD with probability at least 1− (1/pD). We construct the DAG
such that it consists of a binary fanout to p/3 spines of length D =

196

Scan of size Z
at array A

A

D

p/3

1 1’

2

4

2’

4’

3 3’

a a a a

3 h
1+12K/(1−c)

(a) Randomized work stealing

1

1’

2’

2

A
memory locations of size Z
Two parallel scans of same

D

p/3

(b) Centralized work stealing

Figure 6: DAGs used in the proof of Theorem 5.2.

D′ − 2(12K/(1 − ch) + log(p/3) + log M) each (ch ∈ (0, 1) is
a constant that we will define shortly). Each of the first D/2 nodes
on the spine forks off a “superscan” that consists of 31+12K/(1−ch)

identical parallel scans of length M each. A scan over an array A
of size M is a binary tree forking out in to M parallel leaves, each
leaf scanning one of the consecutive words in the array A. The
remaining D/2 nodes on the spine are the joins corresponding to
superscans forked up the spine. Note that Dlat

A,P = D′ + Ck+1 be-
cause each path in the DAG contains at most one memory request.

In a sequential execution, a processor executes the superscans
one by one and can reuse a subsequence of length Mi/Bi (at level
i) for all the identical scans with in a superscan. In other words, se-
quential execution gets (pD/6)(31+12K/(1−ch)−1)�(Mi−Bi)/Bi	
cache hits at level i cache, and the sequential cache complexity
Q(Mi, Bi) is (pD/6)(�Mi/Bi	+31+12K/(1−ch)�(M−Mi)/Bi).

We argue that in the case of randomized work stealing, there
are a large number of superscans such that the probability that at
least two scans from such superscans are executed by different pro-
cessors is greater than some positive constant. This implies that the
cache complexity is Θ(pDMi/Bi) higher that the sequential cache
complexity (claim A).

1. Once the p/3 spines have been forked, each spine is occu-
pied by at least one processor till the stage where work along
a spine has been exhausted. This property follows directly
from the nature of the work stealing protocol.

2. In the early stages of computation after spines have been
forked, but before the computation enters the join phase on
the spines, exactly p/3 processors have a spine node on the
head of their work queue. Therefore, the probability that a
random steal will get a spine node and hence a fresh super-
scan is 1/3.

3. At any moment during the computation, the probability that
more than p/2 of the latest steals of the p processors found
fresh spine nodes is exponentially small in terms of p and
therefore less than 1/2.

4. If processor p stole a fresh superscan A and started the scans
in it, the probability that the work from the superscan A is
not stolen by some other processor before p executes the first
2/3-rd of the scan is at most a constant ch ∈ (0, 1). This is
because the probability that p currently got a fresh superscan
does not depend on events in the history, and therefore, with
probability at least 1/2, more than p/2 processors did not
steal a fresh superscan in the latest steal. This means that
these processors which stole a stale superscan got less than
2/3-rd fraction of the superscan to work on before they need
to steal again. Therefore, by the time p finishes 2/3-rd of the
work, there would have been at least p/2 steal attempts and
there is a probability of at least 1/16 that two of these steals
stole from p. Two steals from p would cause p to lose work
from it’s fresh superscan. In this scenario, p does not execute
more than 5/6-th of the scan even if it comes back to steal
work from the higher instance of scan A.

5. Since there are at most KpD steals with high probability,
there are no more than (1− ch)pD/12 superscans which in-
cur more than 12K/(1 − ch) steals. On an average, about
(1 − ch)pD/6 superscans are stolen from before the first
processor that touched the superscan executes 2/3-rd of it.
Therefore, on an average, there are no less than (1−ch)pD/12
superscans which get fewer than 12K/1 − ch steals and are
stolen from before one processor executes 2/3-rd of it. Such
superscans, by construction have at least two different pro-
cessors execute a complete scan. This proves claim A.

Centralized work stealing: The construction for centralized
work stealing is shown in Figure 6(b). The DAG ensures each steal
causes a scan of a completely different set of memory locations.
The bound follows from the fact that unlike the case in sequential
computation, cache access overlap in the pairs of parallel scans are
never exploited.

Clearly this lower bound also applies to more general multi-level
cache models such as studied in [3, 4, 30, 42, 46, 49].

5.3 Extending Shared Cache Results to Mul-
tiple Levels

Finally, we consider the PMSH model. For the case of a sin-
gle level of shared cache, our previous work [15] showed that the
parallel depth-first (PDF) scheduler was a good choice for map-
ping good sequential cache complexity to provably good parallel
cache complexity. In the PDF scheduler [16, 15] tasks are priori-
tized according to their ordering in the natural sequential execution,
i.e., according to the ordering used to analyze the sequential cache
complexity Q; the ith task in the sequential execution is given pri-
ority rank i. A processor completing a task is assigned the lowest
ranked task among all the available tasks that are ready to execute.
The relative ranking of available tasks can be efficiently determined
on-the-fly without having to perform a sequential execution [16].

197

The results from [15] stated in Section 1 for a single level of
shared cache can be generalized to the PMSH:

THEOREM 5.3. When a cache-oblivious nested-parallel com-
putation A with sequential cache complexity Q(M, B), work W ,
and depth D is scheduled on a PMSH P of p processors using a
PDF scheduler, then the cache at each level i incurs fewer than
Q(p(Mi − BiD

lat
A,P), Bi) cache misses. Moreover, the computa-

tion completes in time not more than W lat
A,P /p + Dlat

A,P .

PROOF. (sketch) The cache bound follows because (1) inclu-
sion implies that hits/misses/evictions at levels < i do not alter the
number of misses at level i, (2) caches sized for inclusion imply
that all words in a line evicted at level > i will have already been
evicted at level i, and hence (3) the key property of PDF sched-
ulers, Qp(M + pBDlat

A,P , B) ≤ Q(M, B), holds at each level i of
a PMSH. The time bound follows because the schedule is greedy
(and we are not accounting for scheduler overheads).

Thus, our approach for developing cache-efficient parallel algo-
rithms via (i) low cache-oblivious sequential cache complexity and
(ii) low depth is validated for shared-cache hierarchies (and PDF
schedulers) as well.

6. DISCUSSION
A goal of the work described in this paper is to develop a sim-

ple model for accounting for locality with dynamic parallelism—
cleanly separating the cost-model from any particular machine model
while still being useful in bounding costs on various machines. We
believe the approach of analyzing cache complexity in the cache-
oblivious model, and work and depth with dynamic nested paral-
lelism as described in the paper achieves this goal. The approach,
however, does have some limitations and ignores some details. We
briefly describe these here. Firstly the general bounds on the par-
allel cache misses rely on low-depth (as the title of the paper im-
plies). It seems that avoiding this would require a modified model
for cache complexity, or taking into account particular properties
of programs as studied in some previous work [39, 14, 29]. A more
general approach to handle algorithms with higher depth would be
useful.

Secondly, our scheduler results assume DAG consistency using
the BACKER protocol, which at present is not implemented on real
machines. The backer protocol avoids cache protocol misses due
false sharing (multiple threads writing to different locations of a
shared cache line) by resolving cache line conflict when writing
back to memory. Strong consistency is not guaranteed and not
needed by our DAG consistent algorithms. Maintaining strong con-
sistency per cache line could create problems on the algorithms
and scheduling techniques we described by forcing cache lines to
“ping-pong” among processors. It would be interesting to develop
a model and algorithms that avoid these problems, but ultimately if
this makes the process of designing or analyzing algorithms more
complicated, or breaks the abstraction between a high-level model
and the machines below, this would be a argument to modify cache
consistency protocols.

Thirdly, our scheduler results assume an optimal cache replace-
ment policy. Note that for practical purposes, each level of cache
could instead use a multi-level inclusive LRU replacement policy.
Unlike in the case of optimal replacement, where a complete mem-
ory access profile may be needed a priori at all levels in order
to compute what to replace, implementing a multi-level LRU re-
placement policy does not require that all levels of the cache hi-
erarchy see the memory access profile. Assuming that a cache
line evicted at level i is sent to level i + 1 and that any access

eviction

inclusive

i−th level cache

(i+1)−th level cache

LRU ordered

eviction

Figure 7: Multi-level LRU

to a memory location not at level i is serviced by passing it from
higher levels in the memory hierarchy through cache level i + 1,
it is possible for cache level i + 1 to know exactly what mem-
ory words are contained in the lower level cache. From the or-
der in which cache lines were evicted by level i, cache level i + 1
can fill up the rest of its slots and order them in LRU order (see
Figure 7). It follows from [47] that the number of cache misses
at each level under the multi-level LRU policy is within a factor
of two of the number of misses for a cache half the size running
the optimal replacement policy. For example, under multi-level
LRU, the upper bound on the cache misses in Theorem 5.1 becomes
2Q(Mi/2, Bi) + O(p(Dlat

A,P + log 1/δ)Mi/Bi).
Finally, our scheduler results are for multi-level hierarchies of

private or shared caches. It would be interesting to extend these
results to more general multi-level models [3, 4, 18, 30, 42, 46,
49], while preserving the goal of supporting a simple model for
algorithm design and analysis.

Acknowledgements. We thank Vijaya Ramachandran for discus-
sions on this work. This work was funded in part by IBM, Intel,
and the Microsoft-sponsored Center for Computational Thinking.

7. REFERENCES
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data

locality of work stealing. Theory of Computing Systems,
35(3), 2002.

[2] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model
for hierarchical memory. In ACM STOC ’87, 1987.

[3] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform
memory hierarchy model of computation. Algorithmica, 12,
1994.

[4] B. Alpern, L. Carter, and J. Ferrante. Modeling parallel
computers as memory hierarchies. In Proc. 1993 Conf. on
Programming Models for Massively Parallel Computers,
1993.

[5] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley,
and J. I. Munro. Cache-oblivious priority queue and graph
algorithm applications. In ACM STOC ’02, 2002.

[6] L. Arge, G. S. Brodal, and R. Fagerberg. Cache-oblivous
data structures. In D. Mehta and S. Sahni, editors, Handbook
of Data Structures and Applications. CRC Press, 2005.

[7] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava.
Fundamental parallel algorithms for private-cache chip
multiprocessors. In ACM SPAA ’08, 2008.

[8] L. Arge, M. T. Goodrich, and N. Sitchinava. Parallel external
memory graph algorithms. Manuscript, 2009.

[9] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In ACM
SPAA ’98, 1998.

[10] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and

198

E. Vicari. Optimal sparse matrix dense vector multiplication
in the I/O-model. In ACM SPAA ’07, 2007.

[11] M. A. Bender, B. C. Kuszmaul, S.-H. Teng, and K. Wang.
Optimal cache-oblivious mesh layout. Computing Research
Repository (CoRR) abs/0705.1033, 2007.

[12] G. Bilardi. Models for parallel and hierarchical computation.
In Proc. 4th ACM International Conf. on Computing
Frontiers, 2007.

[13] G. E. Blelloch. Programming parallel algorithms.
Commun. ACM, 39(3), 1996.

[14] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons,
V. Ramachandran, S. Chen, and M. Kozuch. Provably good
multicore cache performance for divide-and-conquer
algorithms. In ACM-SIAM SODA ’08, 2008.

[15] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache
among threads. In ACM SPAA ’04, 2004.

[16] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably
efficient scheduling for languages with fine-grained
parallelism. Journal of the ACM, 46(2), 1999.

[17] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Brief
announcement: Low-depth cache oblivious sorting. In ACM
SPAA ’09, 2009.

[18] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri.
Low-depth cache oblivious algorithms. Technical Report
CMU-CS-TR-134, Computer Science Department, Carnegie
Mellon University, 2009 http://reports-
archive.adm.cs.cmu.edu/anon/2009/CMU-CS-09-134.pdf.

[19] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and
K. H. Randall. Dag-consistent distributed shared memory. In
IPPS ’96, 1996.

[20] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. J. Parallel Distrib. Comput., 37(1), 1996.

[21] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. Journal of the
ACM, 46(5), 1999.

[22] G. S. Brodal. Cache-oblivious algorithms and data structures.
In Proc. 9th Scandinavian Workshop on Algorithm Theory,
2004. LNCS, vol. 3111. Springer.

[23] G. S. Brodal and R. Fagerberg. Cache oblivious distribution
sweeping. In ICALP ’02, 2002. LNCS, vol. 2380. Springer.

[24] G. S. Brodal, R. Fagerberg, and G. Moruz. Cache-aware and
cache-oblivious adaptive sorting. In ICALP ’05, 2005.
LNCS, vol. 3580. Springer.

[25] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a
cache-oblivious sorting algorithm. ACM Journal of
Experimental Algorithmics, 12, 2008.

[26] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff,
A. Kielstra, C. von Praun, V. Saraswat, and V. Sarkar. X10:
An object-oriented approach to non-uniform clustered
computing. In Proc. ACM SIGPLAN Conf. on
Object-Oriented Programming Languages and Applications,
2005.

[27] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia,
D. E. Vengroff, and J. S. Vitter. External-memory graph
algorithms. In ACM-SIAM SODA ’95, 1995.

[28] R. A. Chowdhury and V. Ramachandran. The
cache-oblivious gaussian elimination paradigm: theoretical
framework, parallelization and experimental evaluation. In
ACM SPAA ’07, 2007.

[29] R. A. Chowdhury and V. Ramachandran. Cache-efficient
dynamic programming algorithms for multicores. In ACM
SPAA ’08, 2008.

[30] R. A. Chowdhury, V. Ramachandran, and F. Silvestri.
Oblivious algorithms for multicore, network, and petascale
computing. Manuscript, 2009.

[31] R. A. Chowdhury, F. Silvestri, B. Blakeley, and
V. Ramachandran. Oblivious algorithms for multicores and
network of processors. In IEEE IPDPS ’10, 2010.

[32] R. Cole and U. Vishkin. Deterministic coin tossing and
accelerating cascades: micro and macro techniques for
designing parallel algorithms. In ACM STOC ’86, 1986.

[33] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. E. Santos, R. Subramonian, and T. von Eicken.
Logp: Towards a realistic model of parallel computation. In
ACM PPOPP ’93, 1993.

[34] E. D. Demaine. Cache-oblivious algorithms and data
structures. In Lecture Notes from the EEF Summer School on
Massive Data Sets, LNCS. Springer-Verlag, 2002.

[35] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R.
Horn, L. Leem, J. Y. Park, M. Ren, A. Aiken, W. J. Dally,
and P. Hanrahan. Sequoia: Programming the memory
hierarchy. In Supercomputing ’06, 2006.

[36] G. Franceschini. Proximity mergesort: Optimal in-place
sorting in the cache-oblivious model. In ACM-SIAM SODA
’04, 2004.

[37] W. D. Frazer and A. C. McKellar. Samplesort: A sampling
approach to minimal storage tree sorting. Journal of the
ACM, 17(3), 1970.

[38] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In IEEE FOCS ’99, 1999.

[39] M. Frigo and V. Strumpen. The cache complexity of
multithreaded cache oblivious algorithms. In ACM SPAA ’06,
2006.

[40] J. Jaja. An Introduction to Parallel Algorithms.
Addison-Wesley, 1992.

[41] P. Kumar. Cache oblivious algorithms. In U. Meyer,
P. Sanders, and J. Sibeyn, editors, Algorithms for Memory
Hierarchies. Springer, 2003.

[42] E. Ladan-Mozes and C. E. Leiserson. A consistency
architecture for hierarchical shared caches. In ACM SPAA
’08, 2008.

[43] R. J. Lipton and R. E. Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36, 1979.

[44] OpenMP Architecture Review Board. OpenMP application
program interface. Technical Report Version 3.0, 2008.

[45] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic
time randomized parallel sorting algorithms. SIAM J.
Comput., 18(3), 1989.

[46] J. E. Savage and M. Zubair. A unified model for multicore
architectures. In Proc. 1st International Forum on
Next-Generation Multicore/Manycore Technologies, 2008.

[47] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules. Commun. ACM, 28(2), 1985.

[48] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8), 1990.

[49] L. G. Valiant. A bridging model for multicore computing. In
ESA, 2008.

199

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

